Answer:
They don’t ‘represent’ anything, they are properties of the wave.
Depending on the type of wave, we experience them as various phenomena. For example, with a sound wave we experience frequency (or wavelength, which is just another way to describe the same property) as the pitch of the sound. We experience amplitude as the loudness of the sound, although due to the characteristics of the ear, frequency also effects perceived loudness.
If the wave is a light wave, we experience the frequency (wavelength) as the colour of the light, and the amplitude as the brightness of the light.
For many waves, we don’t perceive them at all (e.g. radio waves).
For ocean waves, frequency is the time for each peak or trough to reach us, and amplitude is how tall the wave is.
Answer:
False
Explanation:
It is located in the little dipper whose stars are more faint.
We are given with
distance traveled through vacuum = 1.0 m
refractive index of water = 1.33
refractive index of glass = 1.50
refractive index of diamond = 2.42
distance traveled through water is = 1.0/1.33 = 0.75 m
distance traveled through water is = 1.0/1.50 = 0.67 m
distance traveled through water is = 1.0/2.42 = 0.41 m
A moment causes a rotation about or axis. If the moment is to be taken about a point due to a force F, then in order for a moment to develop, the line of action cannot pass through that point...... the total moment was zero because the moment arm was zero as well
Answer:
Conservation of angular momentum
Explanation:
When the objects spread in universe after big bang, because of the tremendous force , they gained angular momentum and started to rotate. Since, then the object continue to rotate on their axis because of conservation of angular momentum. In vacuum of space there no other forces that can stop these rotation, therefore, they continue to rotate.