Answer: AAAAAAAAGGGGGHHHHJJJGSSSUUUUUUUUYCCFVGBHNJM
Explanation: YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET
Answer:
Explanation:
Intensity of light is inversely proportional to distance from source
I ∝ 1 /r² where I is intensity and r is distance from source . If I₁ and I₂ be intensity at distance r₁ and r₂ .
I₁ /I₂ = r₂² /r₁²
If r₂ = 4r₁ ( given )
I₁ / I₂ = (4r₁ )² / r₁²
= 16 r₁² / r₁²
I₁ / I₂ = 16
I₂ = I₁ / 16
So intensity will become 16 times less bright .
"16 times " is the answer .
Answer: The amplitude is 0. (assuming that the amplitude ot both initial waves is the same)
Explanation:
When two monochromatic light waves of the same wavelength and same amplitude undergo destructive interference, means that the peak of one of the waves coincides with the trough of the other, so the waves "cancel" each other in that point in space.
Then if two light waves undergo destructive interference, the amplitude of the resultant wave in that particular point is 0.
Given data:
* The mass of the baseball is 0.31 kg.
* The length of the string is 0.51 m.
* The maximum tension in the string is 7.5 N.
Solution:
The centripetal force acting on the ball at the top of the loop is,
![\begin{gathered} T+mg=\frac{mv^2}{L}_{} \\ v^2=\frac{L(T+mg)}{m} \\ v=\sqrt[]{\frac{L(T+mg)}{m}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20T%2Bmg%3D%5Cfrac%7Bmv%5E2%7D%7BL%7D_%7B%7D%20%5C%5C%20v%5E2%3D%5Cfrac%7BL%28T%2Bmg%29%7D%7Bm%7D%20%5C%5C%20v%3D%5Csqrt%5B%5D%7B%5Cfrac%7BL%28T%2Bmg%29%7D%7Bm%7D%7D%20%5Cend%7Bgathered%7D)
For the maximum velocity of the ball at the top of the vertical circular motion,
![v_{\max }=\sqrt[]{\frac{L(T_{\max }+mg)}{m}}](https://tex.z-dn.net/?f=v_%7B%5Cmax%20%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7BL%28T_%7B%5Cmax%20%7D%2Bmg%29%7D%7Bm%7D%7D)
where g is the acceleration due to gravity,
Substituting the known values,
![\begin{gathered} v_{\max }=\sqrt[]{\frac{0.51(7.5_{}+0.31\times9.8)}{0.31}} \\ v_{\max }=\sqrt[]{\frac{0.51(10.538)}{0.31}} \\ v_{\max }=\sqrt[]{17.34} \\ v_{\max }=4.16\text{ m/s} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20v_%7B%5Cmax%20%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B0.51%287.5_%7B%7D%2B0.31%5Ctimes9.8%29%7D%7B0.31%7D%7D%20%5C%5C%20v_%7B%5Cmax%20%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B0.51%2810.538%29%7D%7B0.31%7D%7D%20%5C%5C%20v_%7B%5Cmax%20%7D%3D%5Csqrt%5B%5D%7B17.34%7D%20%5C%5C%20v_%7B%5Cmax%20%7D%3D4.16%5Ctext%7B%20m%2Fs%7D%20%5Cend%7Bgathered%7D)
Thus, the maximum speed of the ball at the top of the vertical circular motion is 4.16 meters per second.