The wavelength of the note is

. Since the speed of the wave is the speed of sound,

, the frequency of the note is

Then, we know that the frequency of a vibrating string is related to the tension T of the string and its length L by

where

is the linear mass density of our string.
Using the value of the tension, T=160 N, and the frequency we just found, we can calculate the length of the string, L:
answers 93 bar
The atmosphere of Venus is the layer of gases surrounding Venus. It is composed primarily of carbon dioxide and is much denser and hotter than that of Earth. The temperature at the surface is 740 K (467 °C, 872 °F), and the pressure is 93 bar (9.3 MPa), roughly the pressure found 900 m (3,000 ft) underwater on Earth.
In the process of peppering the question with those forty (40 !) un-necessary quotation marks, you neglected to actually show us the illustration. So we have no information to describe the adjacent positions, and we're not able to come up with any answer to the question.