r₁ = distance of point A from charge q₁ = 0.13 m
r₂ = distance of point A from charge q₂ = 0.24 m
r₃ = distance of point A from charge q₃ = 0.13 m
Electric field by charge q₁ at A is given as
E₁ = k q₁ /r₁² = (9 x 10⁹) (2.30 x 10⁻¹²)/(0.13)² = 1.225 N/C towards right
Electric field by charge q₂ at A is given as
E₂ = k q₂ /r₂² = (9 x 10⁹) (4.50 x 10⁻¹²)/(0.24)² = 0.703 N/C towards left
Since the electric field in left direction is smaller, hence the electric field by the third charge must be in left direction
Electric field at A will be zero when
E₁ = E₂ + E₃
1.225 = 0.703 + E₃
E₃ = 0.522 N/C
Electric field by charge "q₃" is given as
E₃ = k q₃ /r₃²
0.522 = (9 x 10⁹) q₃/(0.13)²
q₃ = 0.980 x 10⁻¹² C = 0.980 pC
Answer:
F = 156.3 N
Explanation:
Let's start with the top block, apply Newton's second law
F - fr = 0
F = fr
fr = 52.1 N
Now we can work with the bottom block
In this case we have two friction forces, one between the two blocks and the other between the block and the surface. In the exercise, indicate that the two friction coefficients are equal
we apply Newton's second law
Y axis
N - W₁ -W₂ = 0
N = W₁ + W₂
as the two blocks are identical
N = 2W
X axis
F - fr₁ - fr₂ = 0
F = fr₁ + fr₂
indicates that the lower block is moving below block 1, therefore the upper friction force is
fr₁ = 52.1 N
fr₁ = μ N
a
s the normal in the lower block of twice the friction force is
fr₂ = μ 2N
fr₂ = 2 μ N
fr₂ = 2 fr₁
we substitute
F = fr₁ + 2 fr₁
F = 3 fr₁
F = 3 52.1
F = 156.3 N
Answer:
the car is moving so that how it gos so fast
Explanation:
Use the distance swan and the time elapsed in that interval.
Average velocity = distance / time
Average velocity = [4.0 m + 3.0m] / 3.2 s = 2.1875 m/s
If iron were used to make coins then it would rust easily,because of its exposure to water, air etc..