this is true. I can confirm, just got it right on edge
Answer:
Explanation:
i. CW moment = 10 N (10 cm) + 30 N (30 cm) - 60 N (40 cm) = - 1400 N-cm
ii. ACW momenet = 60 N (40 cm) - 10 N (10 cm) + 30 N (30 cm) = 1400 N-cm
iii. No. The lever is not balanced in the situation. Because the moment is ± 1400 N-cm. if balance, the moment must be Zero.
iv. the location of 10N by keeping the other loads unchanged to balance the lever is 150 cm
take moment from Δ (support)
60(40) = 10(x) + 30(30)
2400 = 10x + 900
10x = 2400 - 900
10x = 1500
x = 1500/10
x = 150 cm
therefore, the location of 10N by keeping the other loads unchanged to balance the lever is 150 cm
Answer:
Galileo Galilei
Explanation:
although Galileo was not the scientist who invented the telescope, he was the first to use it to observe celestial objects. he used the telescope in 1609. his discovery included more accurate information about the moon, the sun and some of the planets.
Um of momenta = 0( Since both the cars stop)
<span>Let m1 be the mass of the cadillac and m2 be the mass of the volkswagen. </span>
<span>then, v1=speed of cadillac and v2=speed of volkswagen. </span>
<span>Therefore, (m1)*(v1) + (m2)*(v2) = 0 </span>
<span>Substituting, </span>
<span>(1000*4) + (2000*v2) = 0 </span>
<span>4000 = - 2000 v2 </span>
<span>Therefore, v2= - 2 m/s. </span>
The area of a square is given by:
A = s²
A is the square's area
s is the length of one of the square's sides
Let us take the derivative of both sides of the equation with respect to time t in order to determine a formula for finding the rate of change of the square's area over time:
d[A]/dt = d[s²]/dt
The chain rule says to take the derivative of s² with respect to s then multiply the result by ds/dt
dA/dt = 2s(ds/dt)
A) Given values:
s = 14m
ds/dt = 3m/s
Plug in these values and solve for dA/dt:
dA/dt = 2(14)(3)
dA/dt = 84m²/s
B) Given values:
s = 25m
ds/dt = 3m/s
Plug in these values and solve for dA/dt:
dA/dt = 2(25)(3)
dA/dt = 150m²/s