Probably for kind of the same reason that speed is expressed as a
relationship between two units. You know, like miles per hour .
I guess the only reason is because no single unit has been invented
to describe density.
The rate of doing work or using energy would always be expressed
as a relationship between two units ... we would say that the rate of
work is "(so many) joules per second". But the "watt" was invented,
so we can say "(so many) watts" instead.
So I guess you're right. Density could be simpler to describe
if we only had a unit for it. Then we wouldn't have to say "(so many)
grams per cubic centimeter". We would just say "(so many) (new unit)".
Let's try it out:
"Uhhh, pardon me Professor . . . I've been working late in the lab,
and I believe I've identified a new substance, hitherto unknown to
the scientific community, and totally unexpected. In its pure form,
the substance appears to be pink, it smells like butterscotch, and
its density is approximately 27.4 Brianas. I think it's time we published
these findings ... with your name as lead investigator, of course."
I like it !
Answer:
Energy required = 3169.34 Joules.
Explanation:
The quantity of energy (Q) required can be determined by;
Q = mcΔθ
Where: m is the mass, c is the specific heat and Δθ is the change in temperature.
But, m = 96.7 kg, c = 0.874 J/(kg
),
=
and
=
.
So that,
Q = mc(
-
)
= 96.7 x 0.874 x (
-
)
= 96.7 x 0.874 x 37.5
= 3169.3425
Q = 3169.34
= 3.2 KJ
The amount of energy required is 3169.34 Joules.
To solve this problem it is necessary to consider two concepts. The first of these is the flow rate that can be defined as the volumetric quantity that a channel travels in a given time. The flow rate can also be calculated from the Area and speed, that is,
Q = V*A
Where,
A= Cross-sectional Area
V = Velocity
The second concept related to the calculation of this problem is continuity, which is defined as the proportion that exists between the input channel and the output channel. It is understood as well as the geometric section of entry and exit, defined as,


Our values are given as,


Re-arrange the equation to find the first ratio of rates we have:



The second ratio of rates is



D. The atomic mass in amu is basically the number or nuclei since the mass of the electrons is negligible. For a given atom (element) the number of protons is fixed. Say the element has 10 protons. If the atomic weight is 14 atomic mass units (amu), you know that there are 4 neutrons, since both neutrons and protons are 1 amu each and there are 10 protons
The ideal mechanical advantage of the screwdriver is 47
Explanation:
In this problem, the screwdriver acts as a lever.
The Ideal Mechanical Advantage (IMA) of a lever is given by:

where:
is the distance of the point of application of the input force from the fulcrum
is the distance of the output force from the fulcrum
In this problem, we have:
, since the fulcrum is 0.500 cm from the end
(the distance between the fulcrum and the point where are we holding the screwdriver)
Substutiting,

Learn more about levers here:
brainly.com/question/5352966
#LearnwithBrainly