It is c: a conductor that operates only at low temperatures
There are:
3.41 moles of C
4.54 moles of H
3.40 moles of O.
Why?
To solve the problem, the first thing that we need to do is to write the chemical formula of the ascorbic acid.

Now, we know that there are 100 grams of the compound, so, the masses of each element will represent the percent in the compound.
We have that:

To know the percent of each element, we need to to the following:

So, we know that for the 100 grams of the compound, there are:
40.92 grams of C
4.58 grams of H
54.49 grams of O
We know the molecular masses of each element:

Now, to calculate the number of moles of each element, we need to divide the mass of each element by the molecular mass of each element:

Hence, we have that there are 3.41 moles of C, 4.54 moles of H, and 3.40 moles of O.
Have a nice day!
Answer:
A. The top layer will be diethyl ether, and the top layer will be yellow.
Explanation:
The purpose of the addition of the saturated aqueous solution of polar solvents like sodium chloride in the liquid-liquid extraction techniques is to remove as well as separate any kind of water which may be dissolved in the ether. Water and sodium chloride are both polar and thus, they forms the bottom layer and only ether forms the top layer. The compound being organic and is colored is in the top layer with the ether.
Hence, answer - A. The top layer will be diethyl ether, and the top layer will be yellow.
Answer: 
Explanation:
According to the Arrhenius equation,

or,
![\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7BK_1%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20R%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= rate constant at
= 
= rate constant at
= 
= activation energy for the reaction = 262 kJ/mol = 262000J/mol
R = gas constant = 8.314 J/mole.K
= initial temperature = 
= final temperature = 
Now put all the given values in this formula, we get
![\log (\frac{6.1\times 10^{-8}}{K_2})=\frac{262000}{2.303\times 8.314J/mole.K}[\frac{1}{600.0K}-\frac{1}{775.0K}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7B6.1%5Ctimes%2010%5E%7B-8%7D%7D%7BK_2%7D%29%3D%5Cfrac%7B262000%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B600.0K%7D-%5Cfrac%7B1%7D%7B775.0K%7D%5D)


Therefore, the value of the rate constant at 775.0 K is 