Answer:
Option (B) 6270J
Explanation:
The following were obtained from the question:
M = 100g
T1 = 30°C
T2 = 45°C
ΔT = 45 —30 = 15°C
C = 4.18J/g°C
Q=?
Q = MCΔT
Q = 100 x 4.18 x 15
Q = 6270J
Therefore, the total amount of heat absorbed is 6270J
Answer:
dbdbdbdjdbdjdb zbdjdjdjdirfjfjrjdudhdhdhd
Answer: Object B will heat up more.
Explanation:
The formula for specific heat is as follows.
Q = 
Where,
Q = heat provided
m = mass
C = specific heat
= change in temperature
Now, both the objects have same mass and equal amount of heat is applied.
According to the formula, the equation will be as follows.
= 
= 
Cancel m from both sides, as mass is same. Therefore,
= 
Cancel out the initial temperature and put the values of specific heat, then the equation will be as follows.
= 
Therefore, from the above equation it can be concluded that the object with low specific heat will heat up more as its specific heat will be inversely proportional to its final temperature.
Hence, object B will heat up more.
Answer:
Alkali metals are highly reactive elements that appear to be silver and they are found in group 1 of the periodic table. It consists of lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and francium (Fr). As you go further down the group, the more reactive they are. Those elements all react to water and air, so they must be kept in oil to preserve their state.