Answer:
r₁/r₂ = 1/2 = 0.5
Explanation:
The resistance of a wire is given by the following formula:
R = ρL/A
where,
R = Resistance of wire
ρ = resistivity of the material of wire
L = Length of wire
A = Cross-sectional area of wire = πr²
r = radius of wire
Therefore,
R = ρL/πr²
<u>FOR WIRE A</u>:
R₁ = ρ₁L₁/πr₁² -------- equation 1
<u>FOR WIRE B</u>:
R₂ = ρ₂L₂/πr₂² -------- equation 2
It is given that resistance of wire A is four times greater than the resistance of wire B.
R₁ = 4 R₂
using values from equation 1 and equation 2:
ρ₁L₁/πr₁² = 4ρ₂L₂/πr₂²
since, the material and length of both wires are same.
ρ₁ = ρ₂ = ρ
L₁ = L₂ = L
Therefore,
ρL/πr₁² = 4ρL/πr₂²
1/r₁² = 4/r₂²
r₁²/r₂² = 1/4
taking square root on both sides:
<u>r₁/r₂ = 1/2 = 0.5</u>
Do you still need help?!?!
<span>Answer:
Let m = mass of cannon
Then
10000 = ma
a = 10000/m
v^2 = u^2 + 2as
v^2 = 0 + 2as
84^2 = 2(2.21)(10000/m)
84^2 m = 4.42(10000)
m = 6.264172336
= 6.26 kg
Part 2
Range = u^2sin(2x38)/g
= 84^2sin(76)/9.8
= 698.6129229
= 698.6 m</span>
Out of the given options, ‘it is described as a fundamental force and therefore does not depend on other forces’ is the true statement about gravity.
Answer: Option B
<u>Explanation:
</u>
As we all know that there are four fundamental forces existing in the universe- Electromagnetic force, strong forces, weak forces and the gravitational force.
These are the forces that don’t depend on any other physical force to draw a considerable impact on the physical objects. The gravitational force can be defined as,

Where,
G = Gravitational Constant
= Masses of two substances under consideration
R = distance between the two substances.
Looking upon the formula of gravitational force we can easily estimate that the gravitational force relies on the mass of substances and the relative distance between them. There is no factor than the air friction that hinders the gravitational force and that too in a negligible amount.
The force of gravity on a certain object is calculated through the equation,
F = Gm1m2 / r²
where F is the force, G is a constant, m1 and m2 are masses of the object and Earth, respectively and r is the distance. Substituting the known values for this item,
F = (6.67 x 10⁻¹¹ N.m²/kg²)(1 kg)(5.98 x 10²⁴ kg)/ (6.4 x 10⁶ m)²
F = 9.37 N
Answer: 9.37 N