Answer:2.05 m
Explanation:
Given
Mass of sled 
initial speed 
coefficient of kinetic Friction 
According to work-energy theorem work done by all the forces is change in Kinetic energy

,where d= distance moved



Answer:
7066kg/m³
Explanation:
The forces in these cases (air and water) are: Fa =mg =ρbVg Fw =(ρb −ρw)Vg where ρw = 1000 kg/m3 is density of water and ρb is density of the block and V is its density. We can find it from this two equations:
Fa /Fw = ρb / (ρb −ρw) ρb = ρw (Fa /Fa −Fw) =1000·(1* 21.2 /21.2 − 18.2)
= 7066kg/m³
Explanation:
Either 175 N or 157 N depending upon how the value of 48° was measured from.
You didn't mention if the angle of 48° is from the lug wrench itself, or if it's from the normal to the lug wrench. So I'll solve for both cases and you'll need to select the desired answer.
Since we need a torque of 55 N·m to loosen the nut and our lug wrench is 0.47 m long, that means that we need 55 N·m / 0.47 m = 117 N of usefully applied force in order to loosen the nut. This figure will be used for both possible angles.
Ideally, the force will have a 0° degree difference from the normal and 100% of the force will be usefully applied. Any value greater than 0° will have the exerted force reduced by the cosine of the angle from the normal. Hence the term "cosine loss".
If the angle of 48° is from the normal to the lug wrench, the usefully applied power will be:
U = F*cos(48)
where
U = Useful force
F = Force applied
So solving for F and calculating gives:
U = F*cos(48)
U/cos(48) = F
117 N/0.669130606 = F
174.8537563 N = F
So 175 Newtons of force is required in this situation.
If the 48° is from the lug wrench itself, that means that the force is 90° - 48° = 42° from the normal. So doing the calculation again (this time from where we started plugging in values) we get
U/cos(42) = F
117/0.743144825 = F
157.4390294 = F
Or 157 Newtons is required for this case.
Answer:
F = - 2 A x - B
Explanation:
The force and potential energy are related by the expression
F = - dU / dx i ^ -dU / dy j ^ - dU / dz k ^
Where i ^, j ^, k ^ are the unit vectors on the x and z axis
The potential they give us is
U (x) = A x² + B x + C
Let's calculate the derivatives
dU / dx = A 2x + B + 0
The other derivatives are zero because the potential does not depend on these variables.
Let's calculate the strength
F = - 2 A x - B