In a fluid, all the forces exerted by the individual particles combine to make up the pressure exerted by the fluid
Due to fundamental nature of fluids, a fluid cannot remain at rest under the presence of shear stress. However, fluids can exert pressure normal to any contacting surface. If a point in the fluid is thought of as a small cube, then it follows from the principles of equilibrium that the pressure on every side of this unit of fluid must be equal. but if this were not a case, the fluid would move in the directions of the resulting force, So the pressure on a fluid at rest is isotropic.
Hope This Helps :D <span />
Answer:
Relativistic velocity is of the order of 1/10th of the velocity of light
Explanation:
We define relativistic speed (or velocity) as a speed that is a significant fraction of the speed of light: c = 3*10^8 m/s
Such that for these speeds, the special relativity theory starts to apply (the relativity effects starts to apply).
Usually, we define relativistic speeds as those that are of the order (or larger) of c/10, which is one-tenth of the speed of light.
Then the correct option is C:
Relativistic velocity is of the order of 1/10th of the velocity of light
Answer:
The potential energy is the energy possessed by the body by the position relative to other things. It is also known as stored energy
The formula is: P.E = mgh
P.E = mass * gravitational energy * height
Explanation:
(5 bulbs) x (25 watt/bulb) x (6 hour/day) x (30 day/month) =
(5 x 25 x 6 x 30) watt-hour/month =
22,500 watt-hour/month .
The most common unit of electrical energy used for billing purposes
is the 'kilowatt-hour' = 1,000 watt-hours .
22,500 watt-hour/month = <em>22.5 kWh/month</em>.
(22.5 kWh/month) x (1.50 Rs/kWh) = <em>33.75 Rs / month
</em>
W=mg
a. W=0.01*9.81=0.0981N
b. W=3.6*9.81=35.316N
c.W=0.713*9.81=6.99453N