Increasing mass increases kinetic energy. This can be seen in the equation KE = 1/2 (m) (v)^2
If you found this helpful, please brainliest me!
Answer:
The earth's gravitational force on the sun is equal to the sun's gravitational force on the earth
Explanation:
Newton's third law (law of action-reaction) states that:
"When an object A exerts a force (called action) on an object B, then object B exerts an equal and opposite force (called reaction) on object A"
In other words, when two objects exert a force on each other, then the magnitude of the two forces is the same (while the directions are opposite).
In this problem, we can call the Sun as "object A" and the Earth as "object B". According to Newton's third law, therefore, we can say that the gravitational force that the Earth exerts on the Sun is equal (in magnitude, and opposite in direction) to the gravitational force that the Sun exerts on the Earth.
The answer is D) vibrate. vibrations are what cause sound. Consequently, this is why there is no sound in space, because there is no medium for the for which sound to travel
Answer:
According to newton's second law of motionF=ma Data:-F=3200kgm/sec² or N ,a=2m/sec² ,m=? solution :-F=ma here we have to find m so m=F/a ,m=3200/2=1600kg
Answer:
The centripetal acceleration of the runner is
.
Explanation:
Given that,
A runner completes the 200 m dash in 24.0 s and runs at constant speed throughout the race. We need to find the centripetal acceleration as he runs the curved portion of the track. We know that the centripetal acceleration is given by :

v is the velocity of runner

Centripetal acceleration,

So, the centripetal acceleration of the runner is
. Hence, this is the required solution.