I'm not sure what your question is. But, the half life is the amount of time required for half the material to decay. For U238 this is 4.5 billion years, whilst for Fr-223 (Francium) its about 22 minutes. To calculate the time for something to decay you need to use the equation:
Mass (after time t) = Mass (initial) * (0.5)^(time/half life)
Hope this helps
The magnitude and direction (inward or outward) of the net flux through the cell boundary is - 0.887 wb.m².
<h3>
What is flux?</h3>
Flux describes any effect that appears to pass or travel through a surface or substance.
The magnitude and direction (inward or outward) of the net flux through the cell boundary is calculated as follows;
Ф = Q/ε
where;
- Q is net charge
- ε is permittivity of free space
Φ = (-7.85 x 10⁻¹²)/(8.85 x 10⁻¹²)
Φ = - 0.887 wb.m²
Learn more about flux here: brainly.com/question/10736183
#SPJ1
I am pretty sure the answer is C.
Answer:
140265.8 C = 1.403 × 10⁵ C
Explanation:
The battery's electric potential energy is used to account for the kinetic and potential work done in moving the car up this hill.
Potential work required to move the 757 kg car up a vertical height of 195 m = mgh
P.E = 757 × 9.8 × 195 = 1446627 J
Kinetic work done = (1/2)(m)(v²)
K.E = (1/2)(757)(25²) = 236562.5 J
Total work done in moving the car up that height = 1446627 + 236562.5 = 1683189.5 J
And this would be equal to the potential of the battery.
For the battery, potential difference = (electric potential energy)/(charges moved)
ΔV = ΔU/q
q = ΔU/ΔV
ΔU = 1683189.5 J
ΔV = 12.0 V
q = 1683189.5/12 = 140265.8 C