Have you ever looked up the density of a substance ? You ought to try it. Go ahead. Pick a substance, then go online or open up an actual book and find its density. You will never see any particular volume mentioned along with the density . . . because it doesn't matter. The whole idea of density is that it describes the substance, no matter how much or how little you have of it. The density of a tiny drop of water under a microscope is the same as the density of a supertanker-ful of water.
Comparative investigation is a research method that makes comparison across different countries of the world. Limitation : data set in different countries may be defined differently. Benefit : the method is flexible.
Answer:
mass =25 kg
using clockwise moment = anticlockwise moment
The recoil velocity of cannon is (4) 5.0 m/s
Explanation:
We can find the recoil velocity from the law of conservation of momentum.
The recoil velocity is velocity of body 2 after release of body 1, i.e. velocity of cannon after release of clown.
Let v2 be cannon's velocity, v1 be clown's velocity given = 15 m/sec
m1 be clown's mass = 100kg and m2 be cannon's mass given = 500kg.
So recoil velocity of cannon v2 is given by,
v2 = -(m1÷m2)v1
v2 = -(100÷500)15
v2 = -5 m/s
where the minus sign refers to the direction of cannon's recoil velocity being opposite to that of clown.
Hence, option (4)5.0 m/s is the correct answer.
Answer:
To find the diameter of the wire, when the following are given:
Resistivity of the material (Rho), Current flowing in the conductor, I, Potential difference across the conductor ends, V, and length of the wire/conductor, L.
Using the ohm's law,
Resistance R = (rho*L)/A
R = V/I.
Crossectional area of the wire A = π*square of radius
Radius = sqrt(A/π)
Diameter = Radius/2 = [sqrt(A/π)]
Making A the subject of the formular
A = (rho* L* I)V.
From the result of A, Diameter can be determined using
Diameter = [sqrt(A/π)]/2. π is a constant with the value 22/7
Explanation:
Error and uncertainty can be measured varying the value of the parameters used and calculating different values of the diameters. Compare the values using standard deviation