1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ICE Princess25 [194]
3 years ago
12

. Which of the following commands allows the user to change from object lines to hidden lines?

Engineering
1 answer:
ololo11 [35]3 years ago
8 0
Idjrjroewoeororkroeieidirjjrr
You might be interested in
Free ideas free points. You will be reported for answering "no" or I don't know
KengaRu [80]

Answer:

Here are some cool ideas that you could do

-Zero fuel aircraft

-Advanced Space Propulsion Technologies

-Smart Automation and Blockchain

These are some things I've been working on for a few years lol, maybe you will have more luck

5 0
3 years ago
Drivers killed in speed related accidents usually have a history of_______
bazaltina [42]
I would go with C but i am not 100 percent on that
3 0
3 years ago
Read 2 more answers
The steel 4140 steel contains 0.4% C, however, it shows higher yield strength and ultimate strength than that of the 1045 (0.45%
Aleonysh [2.5K]

Answer:

4140 steel contains 0.4% C  having higher yield strength and ultimate strength than the 1045 steel contains 0.45% C

Explanation:

we have given 4140 steel contains 0.4% C

we know here that 4140 steel is low steel alloy , and it have low amount of chromium , manganese etc alloying element

and these elements which are present in 4140 steel they increase yield strength and ultimate strength of steel

while in 1045 steel contains 0.45 % c is plain carbon steel

and it do not contain any alloying element

so that 4140 steel contains 0.4% C  having higher yield strength and ultimate strength than the 1045 steel contains 0.45% C

4 0
3 years ago
A 20.0 µF capacitor is charged to a potential difference of 800 V. The terminals of the charged capacitor are then connected to
Sergeu [11.5K]

Answer:

a) Q_initial = 16 * 10^-3 C

b) V_1 = V_2 =  (16/3) * 10^2 V

c)  E = 64/15 J

d)  dE = 32/15 J of decrease

Explanation:

Given:

- Capacitor 1, C_1 = 20.0 uF

- Capacitor 2, C_2 = 10.0 uF

- Charged with P.d V = 800 V

Find:

a) the original charge of the system,

(b) the final potential difference across each capacitor

(c) the final energy of the system

(d) the decrease in energy when the capacitors are connected.

Solution:

a)

- The initial charge in the circuit is the one carried by the first charged capacitor.

                           Q_initial = C_1*V

                           Q_initial = 20*10^-6 * 800

                           Q_initial = 16 * 10^-3 C

b)

- After charging the other capacitor, we know that the total charge is conserved among two capacitor:

                          Q_initial = Q_1 + Q_2

- We also know that potential difference across two capacitor is also same.

                          V_1 = V_2 = Q_1 / C_1 = Q_2 / C_2

- Using the two equations and solve for charge Q_2:

                          Q_2 = Q_1*C_2/C_1

                          Q_2 = Q_1*10/20 = 0.5*Q_1

- using conservation of charge:

                          Q_initial = 1.5*Q_1

                          Q_1 = 16*10^-3 / 1.5 = 10.67*10^-3 C

- Hence the Voltage across each capacitor is:

                          V_2 = V_1 = Q_1 / C_1  

                                            = 10.67*10^-3 / 20*10^-6

                                            = (16/3) * 10^2 V

c)

- The energy in the system is:

                          E = 0.5*C_eq*V^2

Where, C_eq is the equivalent capacitance of paralle circuit.

                           E = 0.5*(20+10)*10^-6 *((16/3) * 10^2)^2

                          E = 64/15 J

d)

- The decrease in energy of the capacitors is:

                           dE = E_initial - E_final

Where, E_initial is due to charging of the C_1 only:

                          dE = 0.5*10^-6*20*800^2 - (64/15)

                          dE = 32/5 - 64/15 = 32/15 J

5 0
4 years ago
We can process oil into a lot of useful fuels to run our cars, trucks, and even airplanes. Oil is used for making lots of other
Ostrovityanka [42]

Answer:

Explanation:

Products of oil in our everyday life:

(1) Petro-Chemical Feedstock: These are by product of Refining of Oil which it is used extensively to make PET bottles, Paints, Polyester Shirts, Pocket combs e.t.c

(2) Asphalt : Used extensively to make Motor Road, highways

(3) Plastics : we use plastics in our everyday life, this is also a product of Refining of crude oil e.g PVC, Telephone casing, Tapes e.t.c

(4) Lubricating Oil/Grease : This is another product from crude oil Fractional Distillation.

(5) Propane/ Cooking Gas: This is also a product from oil which is used in our everyday life for cooking, grilling etc.

4 0
3 years ago
Other questions:
  • Two pressure gauges measure a pressure drop of 16.3 psi (lb/in.2) at the entrance and exit of an old buried pipeline. The origin
    13·1 answer
  • A thick oak wall (rho = 545 kg/m3 , Cp = 2385 J/kgK, and k = 0.17 W/mK) initially at 25°C is suddenly exposed to combustion prod
    11·1 answer
  • Air at 2.5 bar, 400 K is extracted from a main jet engine compressor for cabin cooling. The extracted air enters a heat exchange
    14·2 answers
  • Mobility refers to the ability to?
    12·1 answer
  • If 100 J of heat is added to a system so that the final temperature of the system is 400 K, what is the change in entropy of the
    5·1 answer
  • The current through a 10-mH inductor is 10e−t∕2 A. Find the voltage and the power at t = 8 s.
    15·2 answers
  • Why would Chris most likely conclude that he should seek help? A. He feels in control of his emotions even though people annoy h
    15·2 answers
  • 2 definiciones de personas en Técnicos en ingeniería eléctrica y agregar link.<br> Por favor❗❗❗
    13·1 answer
  • A dual-fluid heat exchanger has 10 lbm/s water entering at 100 F, 20 psia and leaving at 50 F, 20 psia. The other fluid is glyco
    13·1 answer
  • Using your knowledge of how an ATM is used, develop a set of use cases that could serve as a basis for understanding the require
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!