Answer:
The overview of the given scenario is explained in explanation segment below.
Explanation:
- The inception of cavitation, that further sets the restriction for high-pressure and high-free operation, has always been the matter of substantial experimental study over the last few generations.
- Cavitation inception would be expected to vary on the segment where the local "PL" pressure mostly on segment keeps falling to that are below the "Pv" vapor pressure of the fluid and therefore could be anticipated from either the apportionment of the pressure.
⇒ A cavitation number is denoted by "σ" .
Answer:
a)
, b) Yes.
Explanation:
a) The maximum thermal efficiency is given by the Carnot's Cycle, whose formula is:


b) The claim of the inventor is possible since real efficiency is lower than maximum thermal efficiency.
Answer: 383.22K
Explanation:
L = 3m, w = 1.5m
Area A = 3 x 1.5 = 4.5m2
Q' = 750W/m2 (heat from sun) ,
& = 0.87
Q = &Q' = 0. 87x750 = 652.5W/m2
E = QA = 652.5 x 4.5 = 2936.25W
T(sur) = 300K, T(panel) = ?
Using E = §€A(T^4(panel) - T^4(sur))
§ = Stefan constant = 5.7x10^-8
€ = emmisivity = 0.85
2936.25 = 5.7x10^-8 x 0.85 x 4.5 x (T^4(panel) - 300^4)
T(panel) = 383.22K
See image for further details.
Answer:
11 toes on one foot? and 5 one the other or just 11 toes?
your NO HINT threw me off
Explanation:
Answer:
Q = 8.845 DEGREE
Explanation:
given data:
combine Mass for 6 cylinder (M) =15 Kg/hr
mass of each cylinder (m) = 15/6 = 2.5 Kg/hr = 0.000694 Kg/ sec
Engine speed (N)= 1500rpm
Diameter of one nozzle hole ( d) = 200 micrometer = 0.0002 m
Discharge Coefficient (Cd) = 0.75
Pressure difference = 100 MPa
Density of fuel = 800 kg/m^3
velocity of fuel is 

injected fuel volume (V) =Area of given Orifices × Fuel velocity × time of single injection × no of injection/sec
we know that p = m/ V
So
putting these value in volume equation and solve for Discharge 
Q = 8.845 DEGREE