Answer:
The solution to this question is 5.153×10⁻⁴(kmol)/(m²·s)
That is the rate of diffusion of ammonia through the layer is
5.153×10⁻⁴(kmol)/(m²·s)
Explanation:
The diffusion through a stagnant layer is given by

Where
= Diffusion coefficient or diffusivity
z = Thickness in layer of transfer
R = universal gas constant
= Pressure at first boundary
= Pressure at the destination boundary
T = System temperature
= System pressure
Where
= 101.3 kPa
,
,
0.5×101.3 = 50.65 kPa
Δz = z₂ - z₁ = 1 mm = 1 × 10⁻³ m
R =
T = 298 K and
= 1.18
= 1.8×10⁻⁵
= 5.153×10⁻⁴
Hence the rate of diffusion of ammonia through the layer is
5.153×10⁻⁴(kmol)/(m²·s)
Answer:
I would say an Oblique drawing.
Explanation:
An oblique drawing uses 45 degree angles.
Answer:
See the attached file for the answer.
Explanation:
See the attached file for the explanation
A Weave lane is a single lane used by drivers to enter and exit a freeway.
<h3>What is this lane about?</h3>
Weave lanes are known to be lanes that acts as an entrance and exits for a lot of cars in highways.
Hence, one can say that A Weave lane is a single lane used by drivers to enter and exit a freeway.
Learn more about Weave lane from
brainly.com/question/10828527
#SPJ1
Answer:
See explanation for step by step procedure to get answer.
Explanation:
Given that:
The conveyor belt is moving downward at 4 m>s. If the coefficient of static friction between the conveyor and the 15-kg package B is ms = 0.8, determine the shortest time the belt can stop so that the package does not slide on the belt.
See the attachments for complete steps to get answer.