1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Furkat [3]
3 years ago
14

Ammonia gas is diffusing at a constant rate through a layer of stagnant air 1 mm thick. Conditions are such that the gas contain

s 50 per cent by volume ammonia at one boundary of the stagnant layer. The ammonia diffusing to the other boundary is quickly absorbed and the concentration is negligible at that plane. The temperature is 295 K and the pressure atmospheric, and under these conditions the diffusivity of ammonia in air is 1.8 x 10~5 m2/s. Estimate the rate of diffusion of ammonia through the layer.
Engineering
1 answer:
fiasKO [112]3 years ago
5 0

Answer:

The solution to this question is 5.153×10⁻⁴(kmol)/(m²·s)

That is the rate of diffusion of ammonia through the layer is

5.153×10⁻⁴(kmol)/(m²·s)

Explanation:

The diffusion through a stagnant layer is given by

N_{A}  = \frac{D_{AB} }{RT} \frac{P_{T} }{z_{2} - z_{1}  } ln(\frac{P_{T} -P_{A2}  }{P_{T} -P_{A1} })

Where

D_{AB} = Diffusion coefficient or diffusivity

z = Thickness in layer of transfer

R = universal gas constant

P_{A1} = Pressure at first boundary

P_{A2} = Pressure at the destination boundary

T = System temperature

P_{T} = System pressure

Where P_{T} = 101.3 kPa P_{A2} =0, P_{A1} =y_{A}, P_{T} = 0.5×101.3 = 50.65 kPa

Δz = z₂ - z₁ = 1 mm = 1 × 10⁻³ m

R =  \frac{kJ}{(kmol)(K)} ,    T = 298 K   and  D_{AB} = 1.18 \frac{cm^{2} }{s} = 1.8×10⁻⁵\frac{m^{2} }{s}

N_{A} = \frac{1.8*10^{-5} }{8.314*295} *\frac{101.3}{1*10^{-3} }* ln(\frac{101.3-0}{101.3-50.65}) = 5.153×10⁻⁴\frac{kmol}{m^{2}s }

Hence the rate of diffusion of ammonia through the layer is

5.153×10⁻⁴(kmol)/(m²·s)

You might be interested in
weight of 1000 pounds is suspended from two cables. The allowable stress in the cables is 1500 psi. Find the minimum diameter fo
kari74 [83]

Answer:

The minimum diameter for each cable should be 0.65 inches.

Explanation:

Since, the load is supported by two ropes and the allowable stress in each rope is 1500 psi. Therefore,

(1/2)(Weight/Cross Sectional Area) = Allowable Stress

Here,

Weight = 1000 lb

Cross-sectional area = πr²

where, r = minimum radius for each cable

(1/2)(1000 lb/πr²) = 1500 psi

500 lb/1500π psi = r²

r = √1.061 in²

r = 0.325 in

Now, for diameter:

Diameter = 2(radius) = 2r

Diameter = 2(0.325 in)

<u>Diameter = 0.65 in</u>

7 0
3 years ago
The Role of Fuel Cells in Renewable Energy Solutions
gogolik [260]

Answer:

chemical energy directly

4 0
2 years ago
A counter-flow double-piped heat exchange is to heat water from 20oC to 80oC at a rate of 1.2 kg/s. The heating is to be accompl
lawyer [7]

Answer:

110 m or 11,000 cm

Explanation:

  • let mass flow rate for cold and hot fluid = M<em>c</em> and M<em>h</em> respectively
  • let specific heat for cold and hot fluid = C<em>pc</em> and C<em>ph </em>respectively
  • let heat capacity rate for cold and hot fluid = C<em>c</em> and C<em>h </em>respectively

M<em>c</em> = 1.2 kg/s and M<em>h = </em>2 kg/s

C<em>pc</em> = 4.18 kj/kg °c and C<em>ph</em> = 4.31 kj/kg °c

<u>Using effectiveness-NUT method</u>

  1. <em>First, we need to determine heat capacity rate for cold and hot fluid, and determine the dimensionless heat capacity rate</em>

C<em>c</em> = M<em>c</em> × C<em>pc</em> = 1.2 kg/s  × 4.18 kj/kg °c = 5.016 kW/°c

C<em>h = </em>M<em>h</em> × C<em>ph </em>= 2 kg/s  × 4.31 kj/kg °c = 8.62 kW/°c

From the result above cold fluid heat capacity rate is smaller

Dimensionless heat capacity rate, C = minimum capacity/maximum capacity

C= C<em>min</em>/C<em>max</em>

C = 5.016/8.62 = 0.582

          .<em>2 Second, we determine the maximum heat transfer rate, Qmax</em>

Q<em>max</em> = C<em>min </em>(Inlet Temp. of hot fluid - Inlet Temp. of cold fluid)

Q<em>max</em> = (5.016 kW/°c)(160 - 20) °c

Q<em>max</em> = (5.016 kW/°c)(140) °c = 702.24 kW

          .<em>3 Third, we determine the actual heat transfer rate, Q</em>

Q = C<em>min (</em>outlet Temp. of cold fluid - inlet Temp. of cold fluid)

Q = (5.016 kW/°c)(80 - 20) °c

Q<em>max</em> = (5.016 kW/°c)(60) °c = 303.66 kW

            .<em>4 Fourth, we determine Effectiveness of the heat exchanger, </em>ε

ε<em> </em>= Q/Qmax

ε <em>= </em>303.66 kW/702.24 kW

ε = 0.432

           .<em>5 Fifth, using appropriate  effective relation for double pipe counter flow to determine NTU for the heat exchanger</em>

NTU = \\ \frac{1}{C-1} ln(\frac{ε-1}{εc -1} )

NTU = \frac{1}{0.582-1} ln(\frac{0.432 -1}{0.432 X 0.582   -1} )

NTU = 0.661

          <em>.6 sixth, we determine Heat Exchanger surface area, As</em>

From the question, the overall heat transfer coefficient U = 640 W/m²

As = \frac{NTU C{min} }{U}

As = \frac{0.661 x 5016 W. °c }{640 W/m²}

As = 5.18 m²

            <em>.7 Finally, we determine the length of the heat exchanger, L</em>

L = \frac{As}{\pi D}

L = \frac{5.18 m² }{\pi (0.015 m)}

L= 109.91 m

L ≅ 110 m = 11,000 cm

3 0
3 years ago
Which of the following is a valid reason why a scientist might reject a scientific theory
Flauer [41]
C I think hope it helps :)
6 0
2 years ago
Read 2 more answers
One or more parties may terminate an agency relationship by placing into the agreement a time period for termination. When that
iVinArrow [24]

Answer:

Explanation:

Complete question:

Fill in the blanks

One or more parties may terminate an agency relationship by placing into the agreement a time period for termination. When that time ,___1______the agency ends. In addition, the parties can specify that the agency is for a particular____2______ . Once that is achieved, the agency ends. Alternatively, the parties can include a specific event as a trigger for termination; once that event,_____3______ the agency ends. The parties can terminate an agency relationship prior to any of the preceding events by ______4_________agreement, or revocation_____5______ by individual party.

Answer

1) lapses

(2) purpose

(3) occurs / begins

(4) mutual

(5) either

8 0
3 years ago
Other questions:
  • A series AC circuit contains a resistor, an inductor of 250 mH, a capacitor of 4.40 µF, and a source with ΔVmax = 240 V operatin
    9·2 answers
  • A series R-L circuit is given. Circuit is connected to an AC voltage generator. a) Derive equations for magnitude and phase of c
    13·1 answer
  • The change in specific internal energy depends on the path of a process. a)-True b)-False
    14·1 answer
  • Consider a space shuttle weighing 100 kN. It is travelling at 310 m/s for 30 minutes. At the same time, it descends 2200 m. Cons
    6·1 answer
  • Nitrogen enters a steady-flow heat exchanger at 150 kPa, 10°C, and 100 m/s, and it receives heat as it flows through it. Nitroge
    15·1 answer
  • What are the controlling LRFD load combinations for dead and floor live load?
    11·1 answer
  • Sam, a carpenter, is asked to identify the abilities he has that are important to his work. What are the top abilities he might
    9·2 answers
  • Which is not required when working in a manufacturing facility?
    10·1 answer
  • How does energy transition from one form to another as water moves from behind a dam to downstream of a dam?.
    8·1 answer
  • What person at the construction worksite keeps workers safe from asbestos exposure?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!