1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Furkat [3]
3 years ago
14

Ammonia gas is diffusing at a constant rate through a layer of stagnant air 1 mm thick. Conditions are such that the gas contain

s 50 per cent by volume ammonia at one boundary of the stagnant layer. The ammonia diffusing to the other boundary is quickly absorbed and the concentration is negligible at that plane. The temperature is 295 K and the pressure atmospheric, and under these conditions the diffusivity of ammonia in air is 1.8 x 10~5 m2/s. Estimate the rate of diffusion of ammonia through the layer.
Engineering
1 answer:
fiasKO [112]3 years ago
5 0

Answer:

The solution to this question is 5.153×10⁻⁴(kmol)/(m²·s)

That is the rate of diffusion of ammonia through the layer is

5.153×10⁻⁴(kmol)/(m²·s)

Explanation:

The diffusion through a stagnant layer is given by

N_{A}  = \frac{D_{AB} }{RT} \frac{P_{T} }{z_{2} - z_{1}  } ln(\frac{P_{T} -P_{A2}  }{P_{T} -P_{A1} })

Where

D_{AB} = Diffusion coefficient or diffusivity

z = Thickness in layer of transfer

R = universal gas constant

P_{A1} = Pressure at first boundary

P_{A2} = Pressure at the destination boundary

T = System temperature

P_{T} = System pressure

Where P_{T} = 101.3 kPa P_{A2} =0, P_{A1} =y_{A}, P_{T} = 0.5×101.3 = 50.65 kPa

Δz = z₂ - z₁ = 1 mm = 1 × 10⁻³ m

R =  \frac{kJ}{(kmol)(K)} ,    T = 298 K   and  D_{AB} = 1.18 \frac{cm^{2} }{s} = 1.8×10⁻⁵\frac{m^{2} }{s}

N_{A} = \frac{1.8*10^{-5} }{8.314*295} *\frac{101.3}{1*10^{-3} }* ln(\frac{101.3-0}{101.3-50.65}) = 5.153×10⁻⁴\frac{kmol}{m^{2}s }

Hence the rate of diffusion of ammonia through the layer is

5.153×10⁻⁴(kmol)/(m²·s)

You might be interested in
In a much smaller model of the Gizmo apparatus, a 5 kg mass drops 86 mm (0.086 m) and raises the temperature of 1 gram of water
Orlov [11]

Answer:

The amount of energy transferred to the water is 4.214 J

Explanation:

The given parameters are;

The mass of the object that drops = 5 kg

The height from which it drops = 86 mm (0.086 m)

The potential energy P.E. is given by the following formula

P.E = m·g·h

Where;

m = The mass of the object = 5 kg

g = The acceleration de to gravity = 9.8 m/s²

h = The height from which the object is dropped = 0.086 m

Therefore;

P.E. = 5 kg × 9.8 m/s² × 0.086 m = 4.214 J

Given that the potential energy is converted into heat energy, that raises the 1 g of water by 1°C, we have;

The amount of energy transferred to the water = The potential energy, P.E. = 4.214 J.

6 0
3 years ago
A transmission line with an imperfect dielectric is connected to an ideal time-invariant voltage generator. The other end of the
kari74 [83]

Answer and Explanation:

O decreases linearly with the distance from the generator

4 0
3 years ago
............ ..........<br>​
sukhopar [10]

Answer:

...................

Explanation:

6 0
3 years ago
What is your name in face book​
nekit [7.7K]

Answer:

Why do you want to know...?

4 0
3 years ago
Read 2 more answers
A car travells at 67.5 km\h in 120 km.how long will it take to reach the destination
Kruka [31]

mark me the brainiest here

average speed (in km/h) of a car stuck in traffic that drives 12 kilometers in 2 hours.

5 0
3 years ago
Other questions:
  • If the efficiency of the boiler is 91.2 % , the overall efficiency of the turbine, which includes the Carnot efficiency and its
    5·1 answer
  • Plz answer all of these questions!
    15·1 answer
  • Water drains at a constant rate through a saturated soil column with a diameter of 1.5 feet and a height of 3 feet. The hydrauli
    11·1 answer
  • // This program accepts data about 100 books and// determines a price for each.// The price is 10 cents per page for the// first
    12·1 answer
  • On a given day, a barometer at the base of the Washington Monument reads 29.97 in. of mercury. What would the barometer reading
    6·1 answer
  • Describe three parts of a fluid power system and the roles played by each to make the device work.
    8·1 answer
  • Why won't Brainly let me make a account or log in? It's always telling me that it can't take my registration at this time or it
    9·1 answer
  • Help thank you &lt;3 :DDD
    13·1 answer
  • Resistance to impact is an example of a(n)
    12·1 answer
  • ILL GIVE BRAINLIEST!!!
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!