Answer:
Given:
I usually walk from home to work. This morning, I walked for 10 minutes until I was halfway to work.
I then realized that I would be late if I kept walking.
I ran the rest of the way. I run twice as fast as I walk.
Find:
The number of minutes in total did it take me to get from home to work
Step-by-step explanation:
Had I kept walking, the second half of my trip would have taken 10 more minutes.
By doubling my speed for the second half of my trip,
I halved the amount of time it took me to finish.
So, the second half of my trip took 5 minutes, for a total trip time of 10+5 = 15 minutes.
The number of minutes in total did it take me to get from home to work is 15 minutes.
The answer i believe is 4000
Answer:
A 16. B 20). C 40 ... 40' 60'| 80. 20 20 20. 2 7 14a. 40 140|| 280'|. BX Hours. Earnings ($).
Step-by-step explanation:
Answer:

Step-by-step explanation:
Using the addition formulae for cosine
cos(x ± y) = cosxcosy ∓ sinxsiny
---------------------------------------------------------------
cos(120 + x) = cos120cosx - sin120sinx
= - cos60cosx - sin60sinx
= -
cosx -
sinx
squaring to obtain cos² (120 + x)
=
cos²x +
sinxcosx +
sin²x
--------------------------------------------------------------------
cos(120 - x) = cos120cosx + sin120sinx
= -cos60cosx + sin60sinx
= -
cosx +
sinx
squaring to obtain cos²(120 - x)
=
cos²x -
sinxcosx +
sin²x
--------------------------------------------------------------------------
Putting it all together
cos²x +
cos²x +
sinxcosx +
sin²x +
cos²x -
sinxcosx +
sin²x
= cos²x +
cos²x +
sin²x
=
cos²x +
sin²x
=
(cos²x + sin²x) = 