Since we are only looking at the vertical height, we can use the free fall equation to find the height:
h = 0.5*g*t^2, where h is height in m, g is acceleration due to gravity (9.81 m/s^2), and t is time in seconds
h = 0.5*(9.81 m/s^2)*(3.7 s)^2
h = 67.15 m
Therefore, the 7th floor window is 67.15 m above ground level.
Answer:
2m/s^2
Explanation:
Clculate the acceleration:
V = u +at
20m/s = 0 + a*10s
a = 20m//10s
a = 2m/s²
From the data given , it is not possible to calculate the displacement , because no direction of motion is given
But it is possible to calculate the distance travelled
Distance = ut + ½ *a*t²
distance = 0 + ½ * 2m/s * 10²s
distance = 100m
<span>Answer: Burrhus Frederic Skinner's Operant Conditioning.
</span><span>B.F. Skinner believed that to understand behavior, in the best way, is to look at the root causes or reasons of an action and its outcomes.
</span>
Skinner proposes the Law of Effect-Reinforcement. Here,he differentiated the positively reinforced behavior or the strengthened behavior, the negatively reinforced behavior (removal of the unpleasant experience), and weakened behavior because of punishment.
<span>
In positive reinforcement, behavior is strengthened through providing an outcome, an effect that an individual finds rewarding. Negative reinforcement also strengthens behavior because the unpleasant experience was removed. Punishment on the other hand is an opposite to reinforcement. Instead of increasing the response, it eliminates it or weakens it.
</span>
Answer: 2.068*
m
Explanation: According to work energy-theorem , the workdone in accelerating the electron equals the energy it would give off in terms of light.
workdone= qV
energy = hc/λ
q=magnitude of an electronic charge= 1.602*
h= planck constant = 6.626*
c= speed of light =2.998* 
v= potential difference= 6*
λ= wavelength=unknown
by making λ subject of formulae we have that
λ= 
λ = 6.626*
* 2.998*
/ 1.602*
* 6*
λ = 
by doing the necessary calculations, we have that
λ = 2.068*
m
The question is incomplete. Here is the complete question.
Three crtaes with various contents are pulled by a force Fpull=3615N across a horizontal, frictionless roller-conveyor system.The group pf boxes accelerates at 1.516m/s2 to the right. Between each adjacent pair of boxes is a force meter that measures the magnitude of the tension in the connecting rope. Between the box of mass m1 and the box of mass m2, the force meter reads F12=1387N. Between the box of mass m2 and box of mass m3, the force meter reads F23=2304N. Assume that the ropes and force meters are massless.
(a) What is the total mass of the three boxes?
(b) What is the mass of each box?
Answer: (a) Total mass = 2384.5kg;
(b) m1 = 915kg;
m2 = 605kg;
m3 = 864.5kg;
Explanation: The image of the boxes is described in the picture below.
(a) The system is moving at a constant acceleration and with a force Fpull. Using Newton's 2nd Law:




Total mass of the system of boxes is 2384.5kg.
(b) For each mass, analyse each box and make them each a free-body diagram.
<u>For </u>
<u>:</u>
The only force acting On the
box is force of tension between 1 and 2 and as all the system is moving at a same acceleration.


= 915kg
<u>For </u>
<u>:</u>
There are two forces acting on
: tension caused by box 1 and tension caused by box 3. Positive referential is to the right (because it's the movement's direction), so force caused by 1 is opposing force caused by 3:


= 605kg
<u>For </u>
<u>:</u>


= 864.5kg