The correct answer is (A) 2.0 J
Total energy of the pendulum is the sum of its kinetic and potential energy. At the instant of time, when the pendulum is at a height <em>h</em> and has a speed <em>v, </em>Its energy is given by,

Substitute 2.0 kg for <em>m</em>, the mass of the pendulum, 9.81 m/s² for <em>g</em>, the acceleration due to gravity, 0.10 m for <em>h and 4.0 m/s for </em>v<em>.</em>

The pendulum has an initial energy of 20 J. the energy lost is given by,

Thus, the energy lost by the pendulum is (A) 2.0 J
Answer:
12.17 m/s²
Explanation:
The formula of period of a simple pendulum is given as,
T = 2π√(L/g)........................ Equation 1
Where T = period of the simple pendulum, L = length of the simple pendulum, g = acceleration due to gravity of the planet. π = pie
making g the subject of the equation,
g = 4π²L/T²................... Equation 2
Given: T = 1.8 s, l = 1.00 m
Constant: π = 3.14
Substitute into equation 2
g = (4×3.14²×1)/1.8²
g = 12.17 m/s²
Hence the acceleration due to gravity of the planet = 12.17 m/s²
Answer:
MRCORRECT has answered the question
Explanation:
Since velocity is a vector, it can change either in magnitude or in direction. Acceleration is therefore a change in either speed ordirection, or both. Keep in mind that althoughacceleration is in the direction of the changein velocity, it is not always in the direction ofmotion.
Answer:
11060M Joules, where M is the mass of the diver in kg
Explanation:
Mass of the skydiver missing, we're assuming it's M.
It's total energy is the sum of the contribution of his kinetic energy (K)- since he's moving at 50 m/s, and it's potential energy (U), since he's subject to earth gravity.
Energy is the sum of the two, so 
Answer:
Je ne Sachez que Qu’est-ce que le