do we solve for x the answer is 125 sorry if im wrong
Answer:
<h2>
<em>7</em><em>2</em><em>.</em><em>9</em><em>°</em></h2>
<em>sol</em><em>ution</em><em>,</em>
<em>
</em>
<em>hope</em><em> </em><em>this</em><em> </em><em>helps</em><em> </em><em>.</em><em>.</em><em>.</em><em>.</em>
<em>Good</em><em> </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em><em>.</em>
Since both are equivalent to y, the equations must be equivalent.
x^2-x-3= -3x+5
x^2+2x-8=0
(x+4)(x-2)=0
x=-4, x=2
Plug the values of x in to either equation
y=-3(-4)+5
y= 12+5
y=17
y= -3(2)+5
y=-6+5
y=-1
Final answer: (-4,17) and (2,-1)
Answer:
$87,461
Step-by-step explanation:
Given that the dimensions or sides of lengths of the triangle are 119, 147, and 190 ft
where S is the semi perimeter of the triangle, that is, s = (a + b + c)/2.
S = (119 + 147 + 190) / 2 = 456/ 2 = 228
Using Heron's formula which gives the area in terms of the three sides of the triangle
= √s(s – a)(s – b)(s – c)
Therefore we have = √228 (228 - 119)(228 - 147)(228 - 190)
=> √228 (109)(81)(38)
= √228(335502)
=√76494456
= 8746.1109071 * $10
= 87461.109071
≈$87,461
Hence, the value of a triangular lot with sides of lengths 119, 147, and 190 ft is $87,461.
I cant access paper right now so i can only give the answer
x= 0,1