To determine the probability that exactly two of the five marbles are blue, we will use the rule of multiplication.
Let event A = the event that the first marble drawn is blue; and let B = the event that the second marble drawn is blue.
To start, it is given that there are 50 marbles, 20 of them are blue. Therefore, P(A) = 20/50
After the first selection, there are 49 marbles left, 19 of them are blue. Therefore, P(A|B) = 19/49
Based on the rule of multiplication:P(A ∩ B) = P(A)*P(A|B)P(A ∩ B) = (20/50) (19/49)P(A ∩ B) = 380/2450P(A ∩ B) = 38/245 or 15.51%
The probability that there will be two blue marbles among the five drawn marbles is 38/245 or 15.51%
We got the 15.51% by dividing 38 by 245. The quotient will be 0.1551. We then multiplied it by 100% resulting to 15.51%
9.
By the Segment Addition Postulate, SAP, we have
XY + YZ = XZ
so
YZ = XZ - XY = 5 cm - 2 cm = 3 cm
10.
M is the midpoint of XZ=5 cm so
XM = 5 cm / 2 = 2.5 cm
11.
XY + YM = XM
YM = XM - XY = 2.5 cm - 2 cm = 0.5 cm
12.
The midpoint is just the average of the coordinate A(-3,2), B(5,-4)

Answer: M is (1,-1)
You'll have to plot it yourself.
13.
For distances we calculate hypotenuses of a right triangle using the distnace formula or the Pythagorean Theorem.

Answer: AB=10
M is the midpoint of AB so
Answer: AM=MB=5
14.
B is the midpoint of AC. We have A(-3,2), B(5,-4)
B = (A+C)/2
2B = A + C
C = 2B - A
C = ( 2(5) - -3, 2(-4) - 2 ) = (13, -10)
Check the midpoint of AC:
(A+C)/2 = ( (-3 + 13)/2, (2 + -10)/2 ) = (5, -4) = B, good
Answer: C is (13, -10)
Again I'll leave the plotting to you.
Answer:
.0025
Step-by-step explanation:
.25%/100=.0025
Answer:
aida's work is the correct answer
Answer:
C. Point is a defined term
Step-by-step explanation:
kleann