Answer:
Weak bonds require less energy to form than strong bonds
Explanation:
According to Coulomb's law, the force between two species is inversely proportional to the distance between them. That said, the bigger the atoms are, the greater the bond length should be to form a molecule.
As a result, for a greater bond length, the attraction force is lower than for a shorter bond length. This implies that large atoms would form weak bonds and small atoms would form strong bonds.
Bond energy is defined as the amount of energy required to break the bond. If a bond is weak, it would require a low amount of energy to break it. This is also true for energy of formation, as it's the same process taking place in the opposite direction.
I believe it forms an anion that has a larger radius.
Answer:
a) Se²⁻> S²⁻ > O²
b) Te²⁻ > I- >Cs+
c) Cs+ > Ba²⁺ > Sr²⁺
Explanation:
(a) Se²⁻, S²⁻, O²⁻
In general, ionic radius decreases with increasing positive charge.
As the charge on the ion becomes more positive, there are fewer electrons.
The ion has a smaller radius. In general, ionic radius increases with increasing negative charge.
For ions of the same charge (e.g. in the same group) the size increases as we go down a group in the periodic table
Se²⁻> S²⁻ > O²
(b) Te²⁻, Cs⁺, I⁻
Te²⁻ > I- >Cs+
Te2- hast the biggest size, because of the double negative charge.
Cs+ has the smallest size since it has the most positive charge, compared to Te2- and I-.
(c) Sr²⁺, Ba²⁺, Cs⁺
Cs+ > Ba²⁺ > Sr²⁺
Cs+ has the biggest size, because its more downward (compared to Sr2+) and more to the left (compared) ot Ba2+.
Sr2+ has the smallest size because it's more upwords (compared to Cs+ and Ba2+)
Answer: C
Explanation:
The impact she has on the environment
Molar solubility is number of moles of the solute that can be dissolved per liter of solution before the solution becomes saturated.
The molar solubility of lead(ii) chloride with ksp value of 2.4 × 10e4 can be solve as:
Ksp = s2 = 2.4 × 10e4
s2 = 2.4 × 10e4
s = √(2.4 × 10e4)
s = 154.9 mol/L