Answer:
double-protected
Explanation:
If a package is inside a package, the item inside the second package is double-protected, because the outer package will keep it safe.
Hope this helps!
The correct answer would b C
Answer:
0.15 L
Explanation:
You need to first find the volume of the container. You can do this by dividing the mass by the density. This will give you the mass in mL.
5.00 kg = 5,000 g
(5,000 g)/(1.00 g/mL) = 5,000 mL
5,000 mL = 5 L
Now, find the volume the seawater will take up.
(5,000 g)(1.03 g/mL) = 4854.4 mL
4854.4 mL = 4.85 L
Subtract the two volumes to find the volume that left unfilled.
5 L - 4.85 L = 0.15 L
Answer:
0.295 mol/L
Explanation:
Given data:
Volume of solution = 3.25 L
Mass of BaBr₂ = 285 g
Molarity of solution = ?
Solution:
Molarity is used to describe the concentration of solution. It tells how many moles are dissolve in per litter of solution.
Formula:
Molarity = number of moles of solute / L of solution
Number of moles of solute:
Number of moles = mass/ molar mass
Molar mass of BaBr₂ = 297.1 g/mol
Number of moles = 285 g/ 297.1 g/mol
Number of moles= 0.959 mol
Molarity:
M = 0.959 mol / 3.25 L
M = 0.295 mol/L
Answer is: The molar solubility of ba3(po4)2 is <span>6.00 x 10-39.
</span>Balanced chemical reaction: Ba₃(PO₄)₂(s) → 3Ba²⁺(aq) + 2PO₄³⁻(aq).
s(Ba₃(PO₄)₂) = 8.89·10⁻⁹ M.
[Ba²⁺] = 3s(Ba₃(PO₄)₂) = 3s.
[PO₄³⁻] = 2s.
Ksp = [Ba²⁺]³ · [PO₄³⁻]².
Ksp = (3s)³ · (2s)².
Ksp = 108s⁵.
Ksp = 108·(8.89·10⁻⁹ M)⁵.
Ksp = 108 · 5.55·10⁻⁴¹ = 6·10⁻³⁹.