Answer:
Isn't this like having enough energy to supply the world for centuries with just 1% of the sea's force?
Explanation:
I guess it's because the amount of energy in it can supply energy.
due to there reactive rate?
Answer:
a: 1
b: 4.5x10⁻⁴
c: 1.125x10⁻⁶
[H₃O⁺] = 0.000859M
Explanation:
As HNO₂ is a weak acid, its equilibrium in water is:
HNO₂(aq) + H₂O(l) ⇄ H₃O⁺(aq) + NO₂⁻(aq)
Equilibrium constant, ka, is defined as:
ka = 4.5x10⁻⁴ = [H₃O⁺] [NO₂⁻] / [HNO₂] <em>(1)</em>
Equilibrium concentration of each specie are:
[HNO₂] = 0.00250M - x
[H₃O⁺] = x
[NO₂⁻] = x
Replacing in (1):
4.5x10⁻⁴ = x × x / 0.00250M - x
1.125x10⁻⁶ - 4.5x10⁻⁴x = x²
0 = x² + 4.5x10⁻⁴x - 1.125x10⁻⁶
As the quadratic equation is ax² + bx + c = 0
Coefficients are:
a: 1
b: 4.5x10⁻⁴
c: 1.125x10⁻⁶
Now, solving quadratic equation:
x = -0.0013 → False answer, there is no negative concentrations.
<em>x = 0.000859</em>
As [H₃O⁺] = x; <em>[H₃O⁺] = 0.000859M</em>
I hope it helps!
Answer : The heat of combustion of n-propanol is 0.554 kJ/mol
Explanation :
First we have to calculate the moles of n-propanol.

Molar mass of n-propanol = 60.09 g/mole

Now we have to calculate the heat of combustion of n-propanol.
As, 0.0166 mole of n-propanol liberated heat of combustion = -33.4 kJ
So, 1 mole of n-propanol liberated heat of combustion = 0.0166 × (-33.4 kJ)
= 0.554 kJ/mol
Therefore, the heat of combustion of n-propanol is 0.554 kJ/mol
In an experiment it is known what quantity has to measured, thus the measurement of melting point has been determining what data to collect. Thus, Option B is correct.
To investigate the boiling point of water and ethanol, the samples has to boiled at constant parameters and the data has been collected with several trials. Thus, option C is correct.
Melting has been described as the change of the solid to the liquid state. With melting, there has been heat energy higher than the force of attraction allowing the molecules to move freely. Thus, option B is correct.
The boiling has been the change in the water at liquid state to the gaseous state. With boiling there is thermal energy capable of increasing the motion of water molecules overcoming electrostatic force.
For more information about melting, refer to the link:
brainly.com/question/12499685