Hello!
The pressure of the gas when it's temperature reaches 928 °C is 3823,36 kPa
To solve that we need to apply
Gay-Lussac's Law. It states that the pressure of a gas when the volume is left constant (like in the case of a sealed container like an aerosol can) is proportional to temperature. This is the relationship derived from this law that we use to solve this problem:

Have a nice day!
Answer:
Electrons
Explanation:
Because the nucleas is In the middle and the Electrons surround it
The answer that i got was three
i redid it and got some answer like 4.62 x1014<span> Hz</span>
Answer: option (1) an electron.
Justification:
1) The plum pudding model of the atom conceived by the scientist J.J. Thompson, described the atom as a solid sphere positively charged with the electrons (particles negatively charged) embedded.
2) The next model of the atom, developed by the scientist Ernest Rutherford, depicted the atom a mostly empty space with a small dense positively charged nucleous and the electrons surrounding it.
3) Then, Niels Bhor came out with the model of electrons in fixed orbits around the nucleous, just like the planets orbit the Sun. So, the path followed by the electrons were orbits.
4) The quantum model of the atom did not place the electrons in fixed orbits around the nucleous but in regions around the nucleous. Those regions were named orbitals. And they are regions were it is most probable to find the electron, since it is not possible to tell the exact position of an electron.
As per this model, the electron has a wave function associated. The scientist Schrodinger developed the wave equation which predicts the location of the electron as a probability.
The orbitals are those regions were it is most likely to find the electron. Those regions are thought as clouds of electrons.