Answer:
The answer to your question is:
Explanation:
a)
Metals: are shiny, malleable and ductile, they can conduct electricity and heat, form cations in aqueous solutions.
Nonmetals: non-lustrous, brittle, not good conductors of heat and electricity, form anions in aqueous solutions.
b)
Metals are located in the left side of the periodic table
Nonmetals are located in the right side of the periodic table.
c)
Metal are use to make pans because they are good conductors of heat and also are malleable and ductile.
Nonmetals are used to make sleeping bags and coolers because they do not conduct heat so they can isolate matter.
Answer: Yes
Explanation: Plasmids offer a number of unique characteristics that make genetic engineering much more efficient. Plasmids are a type of non-chromosomal DNA. Integrating DNA into a bacterial or other chromosome is far more complex than simply putting DNA into a cell; plasmids make it easier to transport DNA into a cell by eliminating this step.
Answer:
The elements in__Group_ 0 of the Periodic Table are called the_noble__gases. They are generally __unreactive_. because they have a__full_outer shell of electrons. So they do not need to gain__lose_or share _electrons_ with other atoms.
Answer: The Lattice energy is the energy required to separate an ionic solid into its component gaseous ions <em>or</em>
It is the energy released when gaseous ions combine to form an ionic solid.
Explanation:
The lattice energy depends on the ionization energies and electron affinities of atoms involved in the formation of the compound. The ionization energies and electron affinities also depends on the ionic radius and charges of the ions involved. As the ionic radius for cations <em>increases</em> down the groups, ionization energy <em>decreases</em>, whereas, as ionic radii <em>decreases</em> across the periods , ionization energy <em>increases</em>. The trend observed for anions is that as ionic radii <em>increase </em>down the groups, electron affinity <em>decreases. </em>Across the period, as ionic radii <em>increases</em> electron affinity <em>increases</em>. Also, as the charge on the ion <em>increases,</em> it leads to an <em>increase</em> in energy requirement/content.
Therefore, for compounds formed from cations and anions in the same period, the highest charged cation and anion will have the highest lattice energy. For example, among the following compounds: Al2O3 (aluminium oxide), AlCl3 (aluminium chloride), MgO, MgCl2 (magnesium chloride), NaCl, Na2O (sodium oxide); Al2O3(aluminium oxide) will have the highest lattice energy, thus will be hardest to break apart because its ions have the highest charge.