|a+bi| = √(a² + b²)
-4-√2 i -> take a = -4 and b = -√2
|-4-√2 i| = √[ (-4)² + (<span>-√2)² ]
= </span><span>√[ 16 + 2<span> ]
</span></span><span>= √[ 18 ]</span> = <span>√[ 9 * 2 ]
= 3√2
the absolute value is 3√2</span>
Answer:
answer below
Step-by-step explanation:
in this case the decimal will be recurring so 1 and 2 thirds is 1.6 recurring and 2 and 7 nigths is 2.7 recurring so just plot in between the intervals so the first one could be between 1.6 and 1.7 and the sexond between 2.7 and 2.8
Answer:
degree measure = 360° × percent of data
Step-by-step explanation:
The ratio of the degree measure of a sector of a circle graph to 360° is the same as the ratio of the represented data to the whole amount of data.
The idea of a circle graph is that the area of the sector is proportional to the data being represented. That is, if the data represented is 10% of the whole, then the sector area is 10% of the whole. Sector area is proportional to the degree measure of its central angle, so the example sector would have a central angle of 10% of 360°, or 36°.
The ratio of the central angle of the sector to 360° is the same as the percentage of data that sector represents.
The answer for your problem (1) is 7.41