The magnitude of your displacement can be equal to the distance you covered, or it can be less than the distance you covered. But it can never be greater than the distance you covered.
This is because displacement is a straight line, whereas distance can be a straight line, a squiggly line, a zig-zag line, a line with loops in it, a line with a bunch of back-and-forths in it, or any other kind of line.
The straight line is always the shortest path between two points.
Answer:
aaksj
Explanation:
a) the capacitance is given of a plate capacitor is given by:
C = \epsilon_0*(A/d)
Where \epsilon_0 is a constant that represents the insulator between the plates (in this case air, \epsilon_0 = 8.84*10^(-12) F/m), A is the plate's area and d is the distance between the plates. So we have:
The plates are squares so their area is given by:
A = L^2 = 0.19^2 = 0.0361 m^2
C = 8.84*10^(-12)*(0.0361/0.0077) = 8.84*10^(-12) * 4.6883 = 41.444*10^(-12) F
b) The charge on the plates is given by the product of the capacitance by the voltage applied to it:
Q = C*V = 41.444*10^(-12)*120 = 4973.361 * 10^(-12) C = 4.973 * 10^(-9) C
c) The electric field on a capacitor is given by:
E = Q/(A*\epsilon_0) = [4.973*10^(-9)]/[0.0361*8.84*10^(-12)]
E = [4.973*10^(-9)]/[0.3191*10^(-12)] = 15.58*10^(3) V/m
d) The energy stored on the capacitor is given by:
W = 0.5*(C*V^2) = 0.5*[41.444*10^(-12) * (120)^2] = 298396.8*10^(-12) = 0.298 * 10 ^6 J
The elapsed time when the particle returns to the origin is determined from the ratio of initial velocity and acceleration of the particle.
<h3>Time of motion of the particle</h3>
The time of motion of the particle is calculated by applying Newton's second law of motion.
F = ma
F = m(v)/t
where;
- t is time of motion of the particle
- m is mass of the particle
- v is velocity of the particle
a = v - u/t
v = u + at
when the particle returns to the origin, direction of u, = negative.
final velocity = 0
0 = -u + at
at = u
t = u/a
Learn more about force here: brainly.com/question/12970081
#SPJ11
More energy is released in nuclear reactions than in chemical reactions; this is because in nuclear reactions, mass is converted to energy. Nuclear energy released in nuclear fission and fusion is several 100 million times as large as an ordinary chemical reaction like the combustion process. The reason why nuclear energy release so much energy is because tremendous amounts of energy is released at one time. The nuclei in a nuclear reaction undergo a chain reaction, causing the neutrons to move extremely fast and release high amounts of energy.
its the the first one u said