Answer:
the work required to turn the crank at the given revolutions is 8,483.4 J
Explanation:
Given;
torque required to turn the crank, T = 4.50 N.m
number of revolutions, = 300 turns
The work required to turn the crank is given as;
W = 2πT
W = 2 x 3.142 x 4.5
W = 28.278 J
1 revolution = 28.278 J
300 revlotions = ?
= 300 x 28.278 J
= 8,483.4 J
Therefore, the work required to turn the crank at the given revolutions is 8,483.4 J
The answer is 100mm/s. I hope this helps :)
Answer: c
Explanation: it is c because i used my brain to answer it
The one tossed upward on the Moon will rise to a greater maximum height before starting to fall.
It'll also spend more total time in flight before returning to the hand that tossed it. (I almost said that it'll spend "more time in the air". That would be silly on the Moon.)