Answer:
- Newton's first law applies. An object at rest will stay that way until a force is applied.
- Any amount of effort can be applied to any amount of mass (in the ideal case). The question is not sufficiently specific.
Explanation:
A force is required to move an object because the object will stay at rest until a force is applied.
__
The effort required to lift or push two masses instead of one depends on the desired effect. For the same kinetic energy, no more effort is required. For the same momentum, half the effort is required for two masses. For the same velocity, double the effort is required.
Answer:
Explained below:
Explanation:
When a cold air mass meets a warm air mass, a front is formed and if the cold air is replacing the warm air, it is known as a cold front. Cold fronts frequently cause thunderstorms or rain showers because they pressure the air in a steep upward direction at the front's edge. They are also responsible to bring the changes in atmospheric pressure and wind direction.
Its (a) and(a)for the other ? and the last one is (d)
An Energy Transfer Diagram is also known as Sankey diagram and this shows the input energy taken in and the transformation of the output energy in another form. Therefore the basis for analyzing an energy transfer diagram would be the sum of all outputs must equal the input. Therefore, it is the third option. Hope this answer helps.
Answer:
Explanation:
Given an RL circuit
A voltage source of.
V = 108V
A resistor of resistance
R = 1.1-kΩ = 1100 Ω
And inductor of inductance
L = 34 H
After he inductance has been fully charged, the switch is open and it connected to the resistor in their own circuit, so as to discharge the inductor
A. Time the inductor current will reduce to 12% of it's initial current
Let the initial charge current be Io
Then, final current is
I = 12% of Io
I = 0.12Io
I / Io = 0.12
The current in an inductor RL circuit is given as
I = Io ( 1—exp(-t/τ)
Where τ is time constant and it is given as
τ = L/R = 34/1100 = 0.03091A
So,
I = Io ( 1—exp(-t/τ))
I / Io = ( 1—exp(-t/τ))
Where I/Io = 0.12
0.12 = 1—exp(-t/τ)
0.12 — 1 = —exp(-t/τ)
-0.88 = -exp(-t/0.03091)
0.88 = exp(-t/0.03091)
Take In of both sides
In(0.88) = In(exp(-t/0.03091)
-0.12783 = -t/0.030901
t = -0.12783 × 0.030901
t = 3.95 × 10^-3 seconds
t = 3.95 ms
B. Energy stored in inductor is given as
U = ½Li²
So, the current at this time t = 3.95ms
I = Io ( 1—exp(-t/τ))
Where Io = V/R
Io = 108/1100 = 0.0982 A
Now,
I = Io ( 1—exp(-t/τ))
I = 0.0982(1 — exp(-3.95 × 10^-3 / 0.030901))
I = 0.0982(1—exp(-0.12783)
I = 0.0982 × 0.12
I = 0.01178
I = 11.78mA
Therefore,
U = ½Li²
U = ½ × 34 × 0.01178²
U = 2.36 × 10^-3 J
U = 2.36 mJ