Answer:
h = 9.83 cm
Explanation:
Let's analyze this interesting exercise a bit, let's start by comparing the density of the ball with that of water
let's reduce the magnitudes to the SI system
r = 10 cm = 0.10 m
m = 10 g = 0.010 kg
A = 100 cm² = 0.01 m²
the definition of density is
ρ = m / V
the volume of a sphere
V =
V =
π 0.1³
V = 4.189 10⁻³ m³
let's calculate the density of the ball
ρ =
ρ = 2.387 kg / m³
the tabulated density of water is
ρ_water = 997 kg / m³
we can see that the density of the body is less than the density of water. Consequently the body floats in the water, therefore the water level that rises corresponds to the submerged part of the body. Let's write the equilibrium equation
B - W = 0
B = W
where B is the thrust that is given by Archimedes' principle
ρ_liquid g V_submerged = m g
V_submerged = m / ρ_liquid
we calculate
V _submerged = 0.10 9.8 / 997
V_submerged = 9.83 10⁻⁴ m³
The volume increassed of the water container
V = A h
h = V / A
let's calculate
h = 9.83 10⁻⁴ / 0.01
h = 0.0983 m
this is equal to h = 9.83 cm
Answer:
See the answer below
Explanation:
A poker that will effectively and safely function to move pieces of coal or logs in a burning fire must be fireproof itself. Hence, to be as safe as possible, such <u>poker should be made from a material that is fireproof</u> and that does not conduct a lot of heat. Otherwise, the poker will catch fire/becomes too hot during the course of usage.
Answer:
0.17724 m/s²
Explanation:
D = Diameter of roll = Length of wing = 11 m
T = Time it takes to complete the circle = 35 s
Velocity

Acceleration

Acceleration of the tip of the plane is 0.17724 m/s²