Answer: 50
Step-by-step explanation: V= 1/3 x base x height
V= 1/3 (30)(5)
V=1/3(150)
V=50
Answer:
The answer is 60cm. (b)
Step-by-step explanation:
For every 1.5cm on the map, it represents 3 ft on real-size scale.
In other words, for every 1cm on the map, it represents 3/1.5 = 2ft on real size scale.
If you want to find 120ft of real-size scale, you can use 120ft/2ft * 1cm which gives 60cm
<h2>
Answer:</h2>
To find slope, we must use the <u><em>slope formula*</em></u>.
![m = \frac{2 - 0.5}{2 - (-2.5)} = \frac{1.5}{4.5}](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7B2%20-%200.5%7D%7B2%20-%20%28-2.5%29%7D%20%3D%20%5Cfrac%7B1.5%7D%7B4.5%7D)
The slope is <em>1.5/4.5</em>.
Answer:
-3/4
Step-by-step explanation:
Use rise over run. Since the line is going down you know it will be negative and basically you just count squares.
Complete Question
Determine whether the normal sampling distribution can be used. The claim is p < 0.015 and the sample size is n=150
Answer:
Normal sampling distribution can not be used
Step-by-step explanation:
From the question we are told that
The null hypothesis is ![H_o : p = 0.015](https://tex.z-dn.net/?f=H_o%20%20%3A%20%20p%20%3D%20%200.015)
The alternative hypothesis is ![H_a : p < 0.015](https://tex.z-dn.net/?f=H_a%20%20%3A%20%20p%20%20%3C%20%200.015)
The sample size is n= 150
Generally in order to use normal sampling distribution
The value ![np \ge 5](https://tex.z-dn.net/?f=np%20%20%5Cge%20%205)
So
![np = 0.015 * 150](https://tex.z-dn.net/?f=np%20%3D%20%200.015%20%2A%20150)
![np = 2.25](https://tex.z-dn.net/?f=np%20%3D%20%202.25)
Given that
normal sampling distribution can not be used