Answer:
2.11 seconds
Explanation:
We use the kinematic equation for the velocity in a constantly accelerated motion under the acceleration of gravity (g):

Answer:
(a) 20 m
(b) 6 m/s²
(c) Between t=0 and t=2, the body moves to the left.
Between t=2 and t=4, the body moves to the right.
Explanation:
v = 3t² − 6t
x(0) = 4
(a) Position is the integral of velocity.
x = ∫ v dt
x = ∫ (3t² − 6t) dt
x = t³ − 3t² + C
Use initial condition to find value of C.
4 = 0³ − 3(0)² + C
4 = C
x = t³ − 3t² + 4
Find position at t = 4.
x = 4³ − 3(4)² + 4
x = 20
(b) Acceleration is the derivative of velocity.
a = dv/dt
a = 6t − 6
Find acceleration at t = 2.
a = 6(2) − 6
a = 6
(c) v = 3t² − 6t
v = 3t (t − 2)
The velocity is 0 at t = 0 and t = 2. Evaluate the intervals.
When 0 < t < 2, v < 0.
When t > 2, v > 0.
Answer:
= 3.869 × 10^-6 J/m³
Explanation:
Intensity is given as W/m^2 which is equivalent to J/ (s*m^2)
Speed of light is 2.99792 × 10^8 m/s.
Therefore;
Electromagnetic energy per cubic meter = Intensity/speed of light
= 1160 J/ (s*m³)/ 2.99792 × 10^8 m/s.
<u>= 3.869 × 10^-6 J/m³</u>