To solve this problem we will apply the concepts of linear mass density, and the expression of the wavelength with which we can find the frequency of the string. With these values it will be possible to find the voltage value. Later we will apply concepts related to harmonic waves in order to find the fundamental frequency.
The linear mass density is given as,



The expression for the wavelength of the standing wave for the second overtone is

Replacing we have


The frequency of the sound wave is



Now the velocity of the wave would be



The expression that relates the velocity of the wave, tension on the string and linear mass density is





The tension in the string is 547N
PART B) The relation between the fundamental frequency and the
harmonic frequency is

Overtone is the resonant frequency above the fundamental frequency. The second overtone is the second resonant frequency after the fundamental frequency. Therefore

Then,

Rearranging to find the fundamental frequency



I do not have a clue i need to answer so i can ask questions sorry
Answer:
anything that takes up space.
The bending of a wave as it crosses a boundary between 2 mediums at an angle is called refraction.
Answer:
Second ball
Explanation:
When a ball is thrown up with a certain velocity when the object reaches the same point from where it was thrown the velocity of the object becomes equal to the velocity with which the ball was thrown.
First ball

Second ball

Third ball

From the equations above it can be seen that the second ball will have the highest velocity when it hits the ground.
So, 