Answer:
Heat needed = 71.19 J
Explanation:
Here heat required can be calculated by the formula
H = mL
M is the mass of water and L is the latent heat of vaporization.
Mass of water, m = 31.5 g = 0.0315 kg
Latent heat of vaporization of water = 2260 kJ/kg
Substituting
H = mL = 0.0315 x 2260 = 71.19 kJ
Heat needed = 71.19 J
Answer:
The total work on the ball is 36.25 Joules
Explanation:
There is an important principle on classical mechanics that is the work-energy principle it states that the total work on an object is equal the change on its kinetic energy, mathematically expressed as:
(1)
With W net the total work, Kf the final kinetic energy and Ki the initial kinetic energy. We're going to use this principle to calculate the total work on the baseball by the force exerted by the bat.
Kinetic energy is the energy related with the movement of an object and every classical object with velocity has some kinetic energy, it is defined as:

With m the mass of the object and v its velocity, knowing this we can use on:
In our case vf is the velocity just after the hit and vi the velocity just before the hit. For an average baseball its mass is 145g that is 0.145 kg, then

1.7 Btu
1 watt = 3.41214 Btu/h
1watt * 1h = 3.41214 Btu/h * h
1 = 3.41214 Btu/ (watt*h)/
0.5 watt * h = 0.5 watt*h * 3.41214 Btu/(watt*h) = 1.706 Btu
what? I guess:
- practice different habits. If you fail don't give up.
- don't always trust people, some are not what they seem.
this question doesn't make any sense...
The correct answer is ring. A disk made of many small particles of rock and ice in orbit around a planet is called ring. The rings of the planet Saturn is considered to be the most extensive planetary rings system in the Solar System.