Answer:
at t=46/22, x=24 699/1210 ≈ 24.56m
Explanation:
The general equation for location is:
x(t) = x₀ + v₀·t + 1/2 a·t²
Where:
x(t) is the location at time t. Let's say this is the height above the base of the cliff.
x₀ is the starting position. At the base of the cliff we'll take x₀=0 and at the top x₀=46.0
v₀ is the initial velocity. For the ball it is 0, for the stone it is 22.0.
a is the standard gravity. In this example it is pointed downwards at -9.8 m/s².
Now that we have this formula, we have to write it two times, once for the ball and once for the stone, and then figure out for which t they are equal, which is the point of collision.
Ball: x(t) = 46.0 + 0 - 1/2*9.8 t²
Stone: x(t) = 0 + 22·t - 1/2*9.8 t²
Since both objects are subject to the same gravity, the 1/2 a·t² term cancels out on both side, and what we're left with is actually quite a simple equation:
46 = 22·t
so t = 46/22 ≈ 2.09
Put this t back into either original (i.e., with the quadratic term) equation and get:
x(46/22) = 46 - 1/2 * 9.806 * (46/22)² ≈ 24.56 m
Answer:
Energy
A wave is a disturbance that carries energy from one place to another through matter and space.
Explanation:
A wave can be defined as a form of disturbance that carries energy from one place to another through matter and space.
The energy of wave depends on the frequency of the wave and the wavelength (lambda) of that particular wave.
Mathematically,
V = f × lambda
Answer:
The magnitude of the force that each wire exerts on the other will increase by a factor of two.
Explanation:
force on parallel current carrying wire, F = BILsinθ
where;
B is the strength of the magnetic field
L is the length of the wire
I is the magnitude of current on the wire
θ is the angle of inclination of the wire
Assuming B, L and θ is constant, then F ∝ I
F = kI

When the amount of current is doubled in one of the wires, lets say the second wire;

Also, if will double the amount of current on the first wire, then
F₁ = 2F₂
Therefore, the magnitude of the force that each wire exerts on the other will increase by a factor of two.
The gravitational force between the two objects A) It increases.
Explanation:
The gravitational force between two objects is given by:
(1)
where
G is the gravitational constant
are the masses of the two objects
r is the separation between the objects
In this problem, object A and object B are initially at a distance of
r = 100 m
And at that distance, the force between them is
F
Later, object A gains some mass. We notice from eq.(1) that the gravitational force is directly proportional to the mass: therefore, if the mass of either of the two objects increases, then the gravitational force between them also increases. Therefore, the new force will be larger than the original force:
F' > F
Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
Answer:
<h2>Changes</h2>
Explanation:
<h3>Variable is something that varies and doesn't remain constant.</h3>