Answer:
Sledgehammer A has more momentum
Explanation:
Given:
Mass of Sledgehammer A = 3 Kg
Swing speed = 1.5 m/s
Mass of Sledgehammer B = 4 Kg
Swing speed = 0.9 m/s
Find:
More momentum
Computation:
Momentum = mv
Momentum sledgehammer A = 3 x 1.5
Momentum sledgehammer A = 4.5 kg⋅m/s
Momentum sledgehammer B = 4 x 0.9
Momentum sledgehammer B = 3.6 kg⋅m/s
Sledgehammer A has more momentum
In this case, volume of the can remains constant. The relationship between pressure and temperature at constant volume is given by:
P/T = Constant
Then

Where
P1 = 40 psi
P2 = ?
T1 = 60°F ≈ 289 K
T2 = 90°F ≈ 305 K (note, 363 K is not right)
Substituting;
Answer : The kinetic energy depends directly on the mass of a particle.
Explanation :
We know that the kinetic energy of any particle is given by :

Where,
m is the mass of an object.
v is the velocity with which it is moving
Kinetic energy is due to the motion of the particle.
So, the kinetic energy of a particle is directly proportional to its mass.
Hence, the conclusion of the question is if the mass of a particle is increases then its kinetic energy also increase.
Answer:
D, the lithosphere. (CRUST AND UPPER MANTLE)
Explanation:
A tectonic plate (also called lithospheric plate) is a massive, irregularly shaped slab of solid rock, generally composed of both continental and oceanic lithosphere. Plate size can vary greatly, from a few hundred to thousands of kilometers across; the Pacific and Antarctic Plates are among the largest. Plate thickness also varies greatly, ranging from less than 15 km for young oceanic lithosphere to about 200 km or more for ancient continental lithosphere (for example, the interior parts of North and South America).
Information found on:
<u>https://pubs.usgs.gov/gip/dynamic/tectonic.html#:~:text=A%20tectonic%20plate%20(also%20called,both%20continental%20and%20oceanic%20lithosphere.&text=Continental%20crust%20is%20composed%20of,such%20as%20quartz%20and%20feldspar.</u>