Answer:
1 Newton
Explanation:
F=9*10^9*q0q1/r^2]]
F=9*10^9*(q0q1)/ r^2
r=3cm
F=4N
F=9*10^9*(q0q1)/3^2
4=9*10^9*(q0q1)/9
4=10^9 q0q1
q0q1=4/10^9
q0q1=4*10^-9
To calculate the force between the forces at a distance of 6 cm
F=9*10^9*(q0q1)/ r^2
=9*10^9*(4*10^-9)/6^2
=9*10^9*(4*10^-9)/36
=10^9*4*10^-9/4
=10^9*10^-9
=1 Newton
Answer:
B: air pressure inside the car drops suddenly
Explanation:
Air in the car drops suddenly because the roof region has lowered pressure than the atmospheric pressure usually varying with the speed of the car
Answer:
True
Explanation:
Atoms of the same element will always have the same atomic mass or the mass listed in the periodic table.
Answer: a. 198.6J b. - 198.6J
Explanation: Parameters given:
m = 15kg
g = 9.8m/s²
∅ = 12°
a. Work done by the force Fp on the cart if the ramp is 6.5m long.
Given the formula, Fp = Mgsin∅ = 15 x 9.8 x sin12° = 30.56N
Therefore Work done (Wp) = Fp x Ramp Length = 30.56 x 6.5 = 198.64Nm or 198.6J
b. The work done by the force mg on the cart.
Since the cart is being pushed upwards, it acts against gravity with its direction of motion. Taking into account the formula from the previous answer for Work Done (Wg) = Fmg x distance
= 15kg x -9.8m/s² x Sin12° x 6.5m
= - 198.6J
To develop this problem it is necessary to apply the oscillation frequency-related concepts specifically in string or pipe close at both ends or open at both ends.
By definition the oscillation frequency is defined as

Where
v = speed of sound
L = Length of the pipe
n = any integer which represent the number of repetition of the spectrum (n)1,2,3...)(Number of harmonic)
Re-arrange to find L,

The radius between the two frequencies would be 4 to 5,


Therefore the frequencies are in the ratio of natural numbers. That is

Here f represents the fundamental frequency.
Now using the expression to calculate the Length we have

Therefore the length of the pipe is 1.3m
For the second harmonic n=2, then

Therefore the length of the pipe in the second harmonic is 2.6m