Answer:
The correct answer is C. 45.5 lbs.
Explanation:
In a second class lever, the load is located between the point in which the force is exerted and the fulcrum.
The formula for any problem involving a lever is:

Where F_e is the effort force, d_e is the total length of the lever, F_l is the load that can be lifted and d_l is the distance between the point of the effort and the fulcrum.
The parameter of the formula that you need is F_l:

The conversion from feet to inches is 1 ft is equal to 12 inches. In this case, 5 ft are equal to 60 inches.

F_l=45.5 lbs
Newton's law of conservation states that energy of an isolated system remains a constant. It can neither be created nor destroyed but can be transformed from one form to the other.
Implying the above law of conservation of energy in the case of pendulum we can conclude that at the bottom of the swing the entire potential energy gets converted to kinetic energy. Also the potential energy is zero at this point.
Mathematically also potential energy is represented as
Potential energy= mgh
Where m is the mass of the pendulum.
g is the acceleration due to gravity
h is the height from the bottom z the ground.
At the bottom of the swing,the height is zero, hence the potential energy is also zero.
The kinetic energy is represented mathematically as
Kinetic energy= 1/2 mv^2
Where m is the mass of the pendulum
v is the velocity of the pendulum
At the bottom the pendulum has the maximum velocity. Hence the kinetic energy is maximum at the bottom.
Also as it has been mentioned energy can neither be created nor destroyed hence the entire potential energy is converted to kinetic energy at the bottom and would be equivalent to 895 J.
Answer:
When the magnetic field is tilted so it is no longer perpendicular to the page.
When the magnetic field gets stronger.
When the size of the loop decreases.
Explanation:
According to the Faraday-Lenz law, the change of the magnetic flux over time causes an induced current, this flux is given by:

Therefore, there will be a variable magnetic flux, when the magnitude of the magnetic field (B) changes over time, when the area of the loop (S) changes over time and / or when the angle (
) between the field and the surface vector changes over time.
ANSWER; KE=5mv^2 so it is proportional to v^2.
Explanation:So if you triple the velocity you are replacing v with 3v. Then you get (3v)^2=9v^2.