made from pure metals . . . no;
they've been made from all kinds of weird compounds and alloys.
conduct electricity with zero resistance . . . yes;
that's why they're called "superconductors".
produce a strong magnetic field . . . possible, but not because it's a superconductor;
just like any other conductor, the magnetic field depends on the current that's flowing in the conductor.
no loss of energy in the transfer of electricity . . .
there's no loss of energy in the current flowing in the superconductor;
but if you tried to transfer the current out of the superconductor into
something else, then there would be some loss.
Answer:
Explanation:
400 W = 400 J/s
300000 J / 400 J/s = 750 s or 12.5 minutes
Explanation:
where is your diagram? lol
Answer:
570 N
Explanation:
Draw a free body diagram on the rider. There are three forces: tension force 15° below the horizontal, drag force 30° above the horizontal, and weight downwards.
The rider is moving at constant speed, so acceleration is 0.
Sum of the forces in the x direction:
∑F = ma
F cos 30° - T cos 15° = 0
F = T cos 15° / cos 30°
Sum of the forces in the y direction:
∑F = ma
F sin 30° - W - T sin 15° = 0
W = F sin 30° - T sin 15°
Substituting:
W = (T cos 15° / cos 30°) sin 30° - T sin 15°
W = T cos 15° tan 30° - T sin 15°
W = T (cos 15° tan 30° - sin 15°)
Given T = 1900 N:
W = 1900 (cos 15° tan 30° - sin 15°)
W = 570 N
The rider weighs 570 N (which is about the same as 130 lb).