1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tino4ka555 [31]
3 years ago
5

An observer is approaching at stationary source at 17.0 m/s. Assuming the speed of sound is 343 m/s, what is the frequency heard

by the observer if the source emits a 2550-Hz sound?
Physics
1 answer:
UNO [17]3 years ago
7 0

Answer:

the frequency heard by the observer is equal to 2677 Hz

Explanation:

given,      

velocity of the observer = 17 m/s

speed of the sound = 343 m/s    

velocity of the source = 0 m/s    

frequency emitted from the source  = 2550 Hz              

f = f_0(\dfrac{v-v_0}{v-v_s})              

f = 2550\times (\dfrac{343+17}{343-0})

velocity of observer is negative as it is approaching the source.                   f = 2676.38 Hz ≈ 2677 Hz                    

hence, the frequency heard by the observer is equal to 2677 Hz

You might be interested in
A car on a roller coaster loaded with passengers has a mass of 2.0 x 10^3 kg. At the lowest point of the the track, the radius o
mart [117]

Answer:

here is my work

Explanation:

6 0
3 years ago
In her hand, a softball pitcher swings a ball of mass 0.245 kg around a vertical circular path of radius 59.8 cm before releasin
GuDViN [60]

Answer:

The velocity is v_b = 20.17 \ m/s

Explanation:

From the question we are told that

   The mass of the ball is  m = 0.245 \ kg

   The radius is  r =  59.8 \  cm  =  0.598 \ m

   The force is  F =  30.9 \ N

   The speed of the ball is  v = 16.0 \ m/s.

Generally the kinetic energy at the top of the circle is mathematically represented as

    K_t  =  \frac{1}{2} *  m  *  v^2

=> K_t  =  \frac{1}{2} *  0.245   *  16.0 ^2  

=> K_t  =  31.36 \ J  

Generally the work done by the force applied on the ball from the top to the bottom  is mathematically represented as

       W =  F *  d

Here  d is the length of  a semi - circular arc which is mathematically represented as

       d =  \pi * r

So

      W =  30.9 *  0.598

      W = 18.48 \ J

Generally the kinetic energy at the bottom is mathematically represented as

      K_b  =  \frac{1}{2} *  m *  v_b^2

=>    K_b  =  \frac{1}{2} *  0.245  *  v_b^2

=>   K_b  =  0.1225  *  v_b^2

From the law of energy conservation

     K_t +  W  =K_b

=>    31.36+  18.48 = 0.1225  *  v_b^2

=>    v_b = 20.17 \ m/s

3 0
3 years ago
The intensity of most of the cyclonic storm reduces after hitting land. Explain giving suitable reasons.
yulyashka [42]

The intensity of most cyclones reduces after hitting land because land takes away the heat and moisture of tropical ocean water. In order to survive, cyclone storms need evaporation from the warm sea surface. Intensity also decreases because of greater fiction on land, compared to the sea surface.

5 0
3 years ago
Read 2 more answers
A spherical bowling ball with mass m = 3.6 kg and radius R = 0.101 m is thrown down the lane with an initial speed of v = 8.7 m/
luda_lava [24]

Answer:

1)  The magnitude of the angular acceleration = 67.92 rad/s^{2}

2) Magnitude of the linear acceleration = 2.744 m/s^{2}

3) How long does it take the bowling ball to begin rolling without slipping = 0.906 s

4) How long does it take the bowling ball to begin rolling without slipping = 6.75 m

5) the final velocity is 6.21 m/s

Explanation:

the given information :

Bowling mass m = 3.6 kg

Radius = 0.101 m

Initial speed v_{0} = 8.7 m/s

Coefficient of kinetic friction μ = 0.28

1) he magnitude of the angular acceleration of the bowling ball is

F = m a

F_{g}  = μ N  ,   N = m g

F_{g}  = μ m g

1) The magnitude of the angular acceleration of the bowling ball as it slides down the lane:

momen inersia of Bowling ball I = (2/5) m R^{2}

torque τ = I α

τ = F R

I α = F R

(2/5) m R^{2}  α = μ m g R

α = (5 μ g / 2R) μ g R

  = (5 x 0.28 x 9.8/ 2 x 0.101)

  = 67.92 rad/s^{2}

2) Magnitude of the linear acceleration of the bowling ball as it slides down the lane

F = - F_{g} , F_{k} is the force of kinetic friction

m a = - μ m g, remove m

the magnitude of linear accelaration is

a = μ g

  = (0.28) (9.8)

  = 2.744 m/s^{2}

3) The bowling ball takes time to begin rolling without slipping:

The linear speed, v_{t} = v_{0} - a t

                            v_{t}  =  v_{0} - μ g t

the angular speed, ω = ω0 + α t

                                ω = ω0 + (5  μ g/2R ) t

v_{t} = ω R

v_{0} - μ g t = ω0 R + (5  μ g/2R ) t R

7 μ g t/2 = v_{0} + ω0 R

hence,

t = (2 v_{0} + ω0 R)/  7 μ g

ω0 = 0 (no initial spin), therefore

t = 2 v_{0} / 7 μ g

 = 2 x 8.7 / 7 (0.28) (9.8)

 = 0.906 s

4) How long it takes for the bowling ball to begin rolling without slipping, S

S = v_{0}  t - (1/2) a t^{2}

  = (8.7) (0.906) - (1/2) (2.744) 0.906^{2}

  = 6.75 m

5) The final velocity

v_{t} = v_{0} - a t

v_{t} = 8.7 - (2.744) (0.906)

v_{t} = 6.21 m/s

4 0
3 years ago
Please define newtons 1st law of motion.
ExtremeBDS [4]
It says an object will remain at rest unless external forces act upon it.
6 0
3 years ago
Read 2 more answers
Other questions:
  • A horse pulls forward on a carriage with a given force. By Newton's Third Law, the carriage must be pulling on the horse backwar
    5·1 answer
  • What determines the ideal mechanical <br> advantage of a pulley?
    10·1 answer
  • Assume that you can drive at a constant speed of 100 kilometers per hour. suppose you started driving from the sun. how long wou
    5·1 answer
  • What mass of a material with density rho is required to make a hollow spherical shell having inner radius r1 and outer radius r2
    7·1 answer
  • Not in book
    14·1 answer
  • Determine the empirical formula for a compound that is 36.86% n and 63.14% o by mass.
    7·2 answers
  • If the hiker starts climbing at an elevation of 350 ft, what will their change in gravitational potential energy be, in joules,
    11·1 answer
  • Definition: The energy transferred by a force to a moving object.
    10·1 answer
  • HURRRRRRRRRRRYYYYYYYYYYYYYYYYYYYYY
    11·1 answer
  • Which of the following is false
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!