Speed depends on time and distance.
        
             
        
        
        
Given Information:
Resistance = R = 14 Ω
Inductance = L = 2.3 H
voltage = V = 100 V
time = t = 0.13 s
Required Information:
(a) energy is being stored in the magnetic field
(b) thermal energy is appearing in the resistance
(c) energy is being delivered by the battery?
Answer:
(a) energy is being stored in the magnetic field ≈ 219 watts
(b) thermal energy is appearing in the resistance ≈ 267 watts 
(c) energy is being delivered by the battery ≈ 481 watts 
Explanation:
The energy stored in the inductor is given by

The rate at which the energy is being stored in the inductor is given by

The current through the RL circuit is given by

Where τ is the the time constant and is given by


Therefore, eq. 1 becomes

At t = 0.13 seconds

(b) thermal energy is appearing in the resistance
The thermal energy is given by

(c) energy is being delivered by the battery?
The energy delivered by battery is 

 
        
             
        
        
        
The applicable relationship is N1/N2 = V1/V2, meaning the ratio of primary voltage to secondary voltage is equal to the ratio of primary turns to secondary turns.
Here N1 = 1000, V1 = 250, V2 = 400V and N2 = TBD.
Rewriting the above relationship, N2 = N1 V2/V1 = 1000 x 400/250 = 1600 turns.
        
             
        
        
        
Answer:
Best explains Jamming
Explanation:
<em>The deliberate radiation of electromagnetic (EM) energy to degrade or neutralize the radio frequency long-haul supervisory control and data acquisition (SCADA) communications links, best explains what?</em>
Jamming is defined as the blocking or interference with authorized wireless communications. it's a problem  in personal area network wireless technologies. Jamming can occur inadvertently due to high levels of noise .
Jammers can send radio signals to interfere or disrupt communication flows by by decreasing the signal-to-noise ratio.They use radio frequency to interfere with communications by keeping it busy.
 
        
             
        
        
        
By definition, power is the amount of energy consumed (or produced) in a second. (or more precisely, it is the rate of change in energy).
so anything which uses energy in a known time period can be labeled with a power rating. 
an example for power could be a nuclear plant; traditional nuclear plants produce somewhat close to 1 giga watts (which means 1 giga joules in a second)