Answer:
Electromagnetic waves are reflected
Explanation:
Reflection of light (and other forms of electromagnetic radiation) occurs when the waves encounter a surface or other boundary that does not absorb the energy of the radiation and bounces the waves away from the surface. ... This concept is often termed the Law of Reflection.
<h2><u>Question</u><u>:</u><u>-</u></h2>
Ryan applied a force of 10N and moved a book 30 cm in the direction of the force. How much was the work done by Ryan?
<h2><u>Answer:</u><u>-</u></h2>
<h3>Given,</h3>
=> Force applied by Ryan = 10N
=> Distance covered by the book after applying force = 30 cm
<h3>And,</h3>
30 cm = 0.3 m (distance)
<h3>So,</h3>
=> Work done = Force × Distance
=> 10 × 0.3
=> 3 Joules

D is the correct answer, assuming that this is the special case of classical kinematics at constant acceleration. You can use the equation V = Vo + at, where Vo is the initial velocity, V is the final velocity, and t is the time elapsed. In D, all three of these values are given, so you simply solve for a, the acceleration.
A and C are clearly incorrect, as mass and force (in terms of projectile motion) have no effect on an object's motion. B is incorrect because it is not useful to know the position or distance traveled, unless it will help you find displacement. Even then, you would not have enough information to use a kinematics equation to find a.
To solve this problem it is necessary to apply the concepts related to Newton's second Law and the force of friction. According to Newton, the Force is defined as
F = ma
Where,
m= Mass
a = Acceleration
At the same time the frictional force can be defined as,

Where,
Frictional coefficient
N = Normal force (mass*gravity)
Our values are given as,

By condition of Balance the friction force must be equal to the total net force, that is to say



Re-arrange to find acceleration,



Therefore the acceleration the horse can give is 
Answer:
A
Explanation:
Snell's law states:
n₁ sin θ₁ = n₂ sin θ₂
where n is the index of refraction and θ is the angle of incidence (relative to the normal).
The index of refraction of air is approximately 1. So:
1 sin 30° = 1.52 sin θ
θ ≈ 19°