First let's find the time it takes for the first ball to land:
Acceleration is a=-g so vertical velocity is V=-gt + V1sin(30).
Position is thus
S=(-1/2)gt^2 +V1t sin(30).
Solving for t gives
t=2V1sin(30)/g
The second ball has the same position function except for the new velocity, which is given by
V2=2V1. Putting this in and solving for t2 gives
t2=4V1sin(30)/g.
It takes twice as long for the second ball to land on the ground.
The horizontal distance of ball 1 is S1 = V1t cos(30). Again we look at ball 2's distance by substituting V2=2V1 and get
S2 = 2V1t2 cos(30).
Note here I put in t2 since it will fly for that amount of time. But we already saw that
t2 = 2t1
So S2=4V1 cos(30)
That is the second ball goes 4 times further than the first one. This is because it is going twice as fast along both the horizontal and the vertical. It moves horizontally twice as fast for twice as long.
The answer is D, all responses are correct
Answer:
37.8225 J
Explanation:
kinetic energy = 1/2 of mass x
Answer:
yes
Explanation:
Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles.
Answer:
Small, icy bodies that have highly eccentric orbits and can be found in the Oort cloud or the Kuiper belt are called COMETS.