B. Sound, because everything else sits still and sound waves move
Answer:
The initial acceleration of the 59g particle is
Explanation:
Newton's second laws relates acceleration (a), net force(F) and mass (m) in the next way:
(1)
We already know the mass of the particle so we should find the electric force on it to use on (1), the magnitude of the electric force between two charged objects by Columb's law is:

with q1 and q2 the charge of the particles, r the distance between them and k the constant
. So:

Using that value on (1) and solving for a

Answer:
the velocity of the fish relative to the water when it hits the water is 9.537m/s and 66.52⁰ below horizontal
Explanation:
initial veetical speed V₀y=0
Horizontal speed Vx = Vx₀= 3.80m/s
Vertical drop height= 3.90m
Let Vy = vertical speed when it got to the water downward.
g= 9.81m/s² = acceleration due to gravity
From kinematics equation of motion for vertical drop
Vy²= V₀y² +2 gh
Vy²= 0 + ( 2× 9.8 × 3.90)
Vy= √76.518
Vy=8.747457
Then we can calculate the velocity of the fish relative to the water when it hits the water using Resultant speed formula below
V= √Vy² + Vx²
V=√3.80² + 8.747457²
V=9.537m/s
The angle can also be calculated as
θ=tan⁻¹(Vy/Vx)
tan⁻¹( 8.747457/3.80)
=66.52⁰
the velocity of the fish relative to the water when it hits the water is 9.537m/s and 66.52⁰ below horizontal
"The proton and neutron have nothing to do with the isotope little billy"