Ok ok ok ok ok ok ok ok ok
Answer:
Explanation:
Given that,
AC frequency of 2.3KHz
f=2.3×10³Hz
Vrms produce is
Vrms=1.5V
Current rms
Irms= 31mA
The capacitor is reconnected to a generator of frequency
f=4.8KHz =4800Hz
The current rms becomes
Irms= 85mA
Vrms=?
Solution
First genrator
The capacitive reactance is given as
Xc=Vrms/Irms
Xc=1.5/31×10^-3
Xc=48.39 ohms
Now, to know the capacitance of the capacitor
Xc=1/2πfC
Then,
C=1/2πfXc
So,
C=1/2×π×2300×48.39
C=1.43×10^-6C
C=1.43μF
Note: the capacitance of the capacitor did not change,
Now for generator two.
The reactance are given as
Xc=1/2πfC
Xc=1/2×π×4800×1.43×10^-6
Xc=23.19ohms
Then,
Vrms2=Irms2 ×Xc
Vrms2=85×10^-3×23.19ohms
Vrms2=1.97V
Vrms2=1.97Volts
The question is incomplete! The complete question along with answer and explanation is provided below.
Question:
A 0.5 kg mass moves 40 centimeters up the incline shown in the figure below. The vertical height of the incline is 7 centimeters.
What is the change in the potential energy (in Joules) of the mass as it goes up the incline?
If a force of 1.0 N pulled up and parallel to the surface of the incline is required to raise the mass back to the top of the incline, how much work is done by that force?
Given Information:
Mass = m = 0.5 kg
Horizontal distance = d = 40 cm = 0.4 m
Vertical distance = h = 7 cm = 0.07 m
Normal force = Fn = 1 N
Required Information:
Potential energy = PE = ?
Work done = W = ?
Answer:
Potential energy = 0.343 Joules
Work done = 0.39 N.m
Explanation:
The potential energy is given by
PE = mgh
where m is the mass of the object, h is the vertical distance and g is the gravitational acceleration.
PE = 0.5*9.8*0.07
PE = 0.343 Joules
As you can see in the attached image
sinθ = opposite/hypotenuse
sinθ = 0.07/0.4
θ = sin⁻¹(0.07/0.4)
θ = 10.078°
The horizontal component of the normal force is given by
Fx = Fncos(θ)
Fx = 1*cos(10.078)
Fx = 0.984 N
Work done is given by
W = Fxd
where d is the horizontal distance
W = 0.984*0.4
W = 0.39 N.m
Answer:
The answer for the above statement is:
C. High-visibility clothing is important to wear in areas with moving vehicles.
because in bright clothes you are easier to see, so people driving can see you.
Explanation:
Answer:
426.84 m
Explanation:
initial velocity u = 0
time t = 3.3 s
distance travelled s = 53.4 m
acceleration due to gravity = g
s = ut + 1/2 g t²
53.4 = 0 + 1/2 g x 3.3²
g = 9.8 m /s²
For the whole length of fall
distance travelled = h
total time = 6.6 + 3.3 = 9.9 s
h = ut + 1/2 g t²
u again = 0
h = .5 x 9.8 x 9.9²
= 480.24 m
distance travelled in last 6.6 s
= 480.24 - 53.4
= 426.84 m