Answer:no it is staying the same speed
Explanation:
Before going to solve this question first we have to understand specific heat capacity of a substance .
The specific heat of a substance is defined as amount of heat required to raise the temperature of 1 gram of substance through one degree Celsius. Let us consider a substance whose mass is m.Let Q amount of heat is given to it as a result of which its temperature is raised from T to T'.
Hence specific heat of a substance is calculated as-
![c= \frac{Q}{m[T'-T]}](https://tex.z-dn.net/?f=c%3D%20%5Cfrac%7BQ%7D%7Bm%5BT%27-T%5D%7D)
Here c is the specific heat capacity.
The substance whose specific heat capacity is more will take more time to be heated up to a certain temperature as compared to a substance having low specific heat which is to be heated up to the same temperature.
As per the question John is experimenting on sand and water.Between sand and water,water has the specific heat 1 cal/gram per degree centigrade which is larger as compared to sand.Hence sand will be heated faster as compared to water.The substance which is heated faster will also cools faster.
From this experiment John concludes that water has more specific heat as compared to sand.
Answer:
f ’= 97.0 Hz
Explanation:
This is an exercise of the doppler effect use the frequency change due to the relative movement of the fort and the observer
in this case the source is the police cases that go to vs = 160 km / h
and the observer is vo = 120 km / h
the relationship of the doppler effect is
f ’= f₀ (v + v₀ / v-
)
let's reduce the magnitude to the SI system
v_{s} = 160 km / h (1000 m / 1km) (1h / 3600s) = 44.44 m / s
v₀ = 120 km / h (1000m / 1km) (1h / 3600s) = 33.33 m / s
we substitute in the equation of the Doppler effect
f ‘= 100 (330+ 33.33 / 330-44.44)
f ’= 97.0 Hz
Im sure the answer is letter B