Answer;
1. strong nuclear force
2. electromagnetic force/ electric force
Explanation;
The more protons an element has, the harder it is to bring nuclei together. It takes more energy to trigger fusion in iron and other heavy elements. Lighter elements, such as helium and hydrogen, require less energy to bring about fusion. The sun, for instance, spends most of its life converting hydrogen into helium.
-The strong nuclear force depends on; a more massive the object is the more attractive the force produced and also as distance between objects increases, attractive force decreases at a faster rate.
Answer:
The contribution of the wavelets lying on the back of the wave front is zero because of something known as the Obliquity Factor. It is assumed that the amplitude of the secondary wavelets is not independent of the direction of propagation, Sources: byju's.com
Answer:
![L_{o}=0.1224m](https://tex.z-dn.net/?f=L_%7Bo%7D%3D0.1224m)
Explanation:
Given data
Force F=2 N
Length L=17 cm = 0.17 m
Spring Constant k=42 N/m
To find
Relaxed length of the spring
Solution
From Hooke's Law we know that
![F_{spring}=k_{s}|s|\\F_{spring}=k_{s}(L-L_{o})\\ 2N=(42N/m)(0.17m-L_{o})\\2=7.14-42L_{o}\\-42L_{o}=2-7.14\\42L_{o}=5.14\\L_{o}=(5.14/42)\\L_{o}=0.1224m](https://tex.z-dn.net/?f=F_%7Bspring%7D%3Dk_%7Bs%7D%7Cs%7C%5C%5CF_%7Bspring%7D%3Dk_%7Bs%7D%28L-L_%7Bo%7D%29%5C%5C%202N%3D%2842N%2Fm%29%280.17m-L_%7Bo%7D%29%5C%5C2%3D7.14-42L_%7Bo%7D%5C%5C-42L_%7Bo%7D%3D2-7.14%5C%5C42L_%7Bo%7D%3D5.14%5C%5CL_%7Bo%7D%3D%285.14%2F42%29%5C%5CL_%7Bo%7D%3D0.1224m)
Answer:
The specific heat capacity of the zinc metal measured in this experiment is 0.427 J/g.°C
Explanation:
From the experimental data, the water loses heat because its initial temperature is greater than the final temperature of the mixture. On the other hand, the zinc metal gains heat because its initial temperature is less than the final temperature of the mixture
Heat loss by water = Heat gain by zinc metal
m1C1(T1 - T3) = m2C2(T3 - T2)
m1 is mass of water = 55.4 g
C1 is specific heat capacity of water = 4.2 J/g.°C
m2 is mass of zinc metal = 23.4 g
C2 is specific heat capacity of zinc metal
T1 is the initial temperature of water = 99.61 °C
T2 is the initial temperature of zinc metal = 21.6 °C
T3 is the final temperature of the mixture = 96.4 °C
55.4×4.2(99.61 - 96.4) = 23.4×C2(96.4 - 21.6)
746.9028 = 1750.32C2
C2 = 746.9028/1750.32 = 0.427 J/g.°C