Answer: They are diffrent
Step-by-step explanation: The logistic equation was first published by Pierre Verhulst in 1845. This differential equation can be coupled with the initial condition P(0) = P0 to form an initial-value problem for P(t). Suppose that the initial population is small relative to the carrying capacity. Then P K is small, possibly close to zero.
The logistic regression coefficients are the coefficients b 0, b 1, b 2,... b k of the regression equation: An independent variable with a regression coefficient not significantly different from 0 (P>0.05) can be removed from the regression model (press function key F7 to repeat the logistic regression procedure).
By the way, this is copied from the internet.
<h3>
✽ - - - - - - - - - - - - - - - ~Hello There!~ - - - - - - - - - - - - - - - ✽</h3>
➷ Divide by the denominator:
453/3 = 151
Multiply by the numerator:
151 x 2 = 302
Subtract this from the original number:
453 - 302 = 151
He has 151 sweets left
<h3><u>
✽</u></h3>
➶ Hope This Helps You!
➶ Good Luck (:
➶ Have A Great Day ^-^
↬ ʜᴀɴɴᴀʜ ♡
A truth table is a way of organizing information to list out all possible scenarios. We title the first column p for proposition. In the second column we apply the operator to p, in this case it's ~p (read: not p). So as you can see if our premise begins as True and we negate it, we obtain False, and vice versa.
Answer:
2a: (c)
5o: (1, 3) and (1,1)
3a: (b)
1a: (d)
4o: (b)
Step-by-step explanation:
2a: the equation of a circle circumference needs to be transformable to the form
where
is the center and <em>r</em> is the radius. (a) and (d) can’t be it because they contain non-zero factors on <em>xy</em>. (b) isn’t an equation.
5o: just put the given (<em>x</em>, <em>y</em>) into the equations and see if it holds. (2, 3) isn’t on the circumference of (1) because
, (3, 1) isn’t on it either because
.
3a: calculate the value of the left-hand side term of the equation using (<em>x</em>, <em>y</em>) from the given point <em>M</em>. That’s the difference of square distance to the center to the square radius
. Thus it’s 0 if the point is on the circumference, negative if inside and positive if outside. You get
, positive, so it’s outside the circle.
1a: see definition from 2a. Here,
.
4o: insert the y from the straight line equation (r) (which can be equivalently transformed to
) into the circumference equation. If it yields no solution, that’s outside, it there’s exactly one solution, that’s a tangent and if there are two solutions, it’s a secant.
There are two solutions, so it’s a secant.
Answer:
the practice of analysing and describing a complex phenomenon in terms of its simple or fundamental constituents, especially when this is said to provide a sufficient explanation