Answer:
8.625 grams of a 150 g sample of Thorium-234 would be left after 120.5 days
Explanation:
The nuclear half life represents the time taken for the initial amount of sample to reduce into half of its mass.
We have given that the half life of thorium-234 is 24.1 days. Then it takes 24.1 days for a Thorium-234 sample to reduced to half of its initial amount.
Initial amount of Thorium-234 available as per the question is 150 grams
So now we start with 150 grams of Thorium-234





So after 120.5 days the amount of sample that remains is 8.625g
In simpler way , we can use the below formula to find the sample left

Where
is the initial sample amount
n = the number of half-lives that pass in a given period of time.
Answer:
80 ml the right answer
Explanation:
<em>Hope</em><em> </em><em>it</em><em> </em><em>helps</em><em> </em><em>you</em><em> </em><em>dude</em><em> </em>
Answer:
We need 92.3 grams of sodium azide
Explanation:
Step 1: Data given
Mass of nitrogen gas = 59.6 grams
Molar mass of nitrogen gas = 28.0 g/mol
Molar mass of sodium azide = 65.0 g/mol
Step 2: The balanced equation
2NaN3 → 2Na + 3N2
Step 3: Calculate moles nitrogen gas
Moles N2 = mass N2 / molar mass N2
Moles N2 = 59.6 grams/ 28.0 g/mol
Moles N2 = 2.13 moles
Step 4: Calculate moles NaN3
for 2 moles NaN3 we'll have 2 moles Na and 3 moles N2
For 2.13 moles N2 we need 2/3* 2.13 = 1.42 moles NaN3
Step 5: Calculate mass NaN3
Mass NaN3 = Moles NaN3 * molar mass NaN3
Mass NaN3 = 1.42 moles * 65.0 g/mol
Mass NaN3 = 92.3 grams
We need 92.3 grams of sodium azide
The compound with the highest standard free energy of formation is O3(g)
Answer:
Explanation:
The nucleus (center) of the atom contains the protons (positively charged) and the neutrons (no charge). The outermost regions of the atom are called electron shells and contain the electrons (negatively charged). Atoms have different properties based on the arrangement and number of their basic particles.