Cl2(s); oxidation number 1 is the incorrect choices in oxidation number.
Explanation:
In the elemental form oxidation state is zero. Here chlorine is present in elemental form so oxidation state is zero.
Oxidation number depends on the number of electrons gained or lost by an atom of the element say in compound formation.
If electron is gained oxidation number becomes negative.
If electron is lost then oxidation number is positive.
If the octet rule is fulfilled that valence shell is filled them atomic number gets zero. Since Cl2 is in neutral state the oxidation number is 0.
Oxidation number in general can be made out by checking the valency of the element as oxidation number is also equal to the valency.
The Olympic sport of curling is one that is practically designed to show Physics in motion. Curling is a sport in which two teams alternate sliding smoothed stone pucks down an ice rink court with the intent to seat their stone closest to the center of the target (called the house). Each team has eight stones, meaning that the team that goes second has the (could be) massive advantage of sending the last stone.
The mass of the stone is important in that the more massive a stone (m) and the speed at which it travels (v) dictates it's momentum (momentum=mxv). As the curling stone slides down the ice (which is relatively frictionless unless acted upon by other players or objects) and having inertia, continues in it's straight course (again, unless acted upon by outside forces). If the stone hits another stone, it transfers some of its momentum in an elastic collision to that stone and the original stone is deflected in a calculable manner.
Collisions are used in the game to either clear opponent's stones from the house or out of their defensive positions, or to make adjustments to one's stones present in the house, all based on the momentum of the moving stone, and its transference.
367.2 g of silver
Explanation:
To find the mass of a substance knowing the number of moles we use the following formula:
number of mole = mass / molecular weight
In the case of silver we use the atomic weight of 108 g/mole.
mass = number of moles × molecular weight
mass of silver = 3.4 moles × 108 g/mole
mass of silver = 367.2 g
Learn more about:
moles
brainly.com/question/2293005
#learnwithBrainly
Answer:
1
Explanation:
For an ideal gas, the average kinetic energy is given by:
Ek = (3/2)*n*R*T
Where n is the number of moles, R is the gas constant (8.31 J/mol*K), and T the temperature. The gases have the same number of moles, and the same temperature, so they will have the same average kinetic energy:
Ek = (3/2)*1*8.31*300
Ek =3739.5 J
So, the ratio between then is 1.
Answer:
their ability to conduct heat and electricity.
Explanation: