Review and Study Material Before Going to
Class.
Seek Understanding.
Take Good Notes.
Practice Daily.
Take Advantage of Lab Time.
Use Flashcards.
Use Study Groups.
Break Large Tasks Into Smaller Ones.
The balanced chemical reaction for the complete combustion of C4H10 is shown below:
C4H10 + (3/2)O2 --> 4CO2 + 5H2O
The enthalpy of formation are listed below:
C4H10: -2876.9 kJ/mol
O2: none (because it is pure substance)
CO2: -393.5 kJ/mol
H2O: -285.8 kJ/mol
The enthalpy of combustion is computed by subtracting the total enthalpy formation of the reactants from that of the products.
ΔHc = (4)(-393.5 kJ/mol) + (5)(-285.8 kJ/mol) - (-2876.9 kJ/mol)
= -<em>126.1 kJ</em>
Thus, the enthalpy of combustion of the carbon is -126.1 kJ.
Answer:
1.35 g
Explanation:
Data Given:
mass of Potassium Permagnate (KMnO₄) = 3.34 g
Mass of Oxygen: ?
Solution:
First find the percentage composition of Oxygen in Potassium Permagnate (KMnO₄)
So,
Molar Mass of KMnO₄ = 39 + 55 + 4(16)
Molar Mass of KMnO₄ = 158 g/mol
Calculate the mole percent composition of Oxygen in Potassium Permagnate (KMnO₄).
Mass contributed by Oxygen (O) = 4 (16) = 64 g
Since the percentage of compound is 100
So,
Percent of Oxygen (O) = 64 / 158 x 100
Percent of Oxygen (O) = 40.5 %
It means that for ever gram of Potassium Permagnate (KMnO₄) there is 0.405 g of Oxygen (O) is present.
So,
for the 3.34 grams of Potassium Permagnate (KMnO₄) the mass of Oxygen will be
mass of Oxygen (O) = 0.405 x 3.34 g
mass of Oxygen (O) = 1.35 g