O2- stands for superoxide anion, S2- stands for sulfide anion, H- stands for hydrogen anion, and Na+ stands for sodium this all ions possess the electron configuration of noble gas because each of them (O2-, S2-, H-, and Na+) has a full outer shell.
Answer:
The temperature of the solute/solvent without any external effect would decrease.
Explanation:
As the bonding between the solute particles is really strong, therefore a large amount of energy is required to overcome these forces. So that the new bonding between the solute and solvent is created.
In order to achieve this, there will be a lot of energy required and that is through the heating process. So the solution will require energy so the solute will dissolve fully either by provision of external force i.e stirring or by heating.
AN element is composed from atoms with the same number of protons,
A compound contain two or more different elements
Explanation:
Lead(II) phosphate is an ionic compound with chemical formula Pb3(PO4)2. Lead(II) phosphate is a long-lived electronically neutral reagent chemical.[1] Despite limited tests on humans, it has been identified as a carcinogen based on tests on animals conducted by the EPA.[2] Lead(II) phosphate appears as hexagonal, colorless crystals or as a white powder. Lead(II) phosphate is insoluble in water and alcohol but soluble in Nitric acid (HNO3) and has fixed alkali hydroxides. When lead(II) phosphate is heated for decomposition it emits very toxic fumes containing Lead (Pb) and POx.[3]
Answer:
12.213 minutes will be taken for 120 g-Thalium-208 to decay to 75 grams.
Explanation:
Radioactive isotopes decay exponentially in time, the mass of the isotope (
), in grams, is described by the formula in time (
), in minutes:
(1)
Where:
- Initial mass of the isotope, in grams.
- Time constant, in minutes.
In addition, the time constant associated with the isotope decay can be described in terms of half-life (
), in minutes:
(2)
If we know that
,
and
, then the time taken by the isotope is:






12.213 minutes will be taken for 120 g-Thalium-208 to decay to 75 grams.